Skip to main content
Log in

Semiclassical theory for many-body fermionic systems

  • Quantum Aspects Of Chaos
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We present a treatment of many-body fermionic systems that facilitates an expression of well-known quantities in a series expansion inħ. The ensuing semiclassical result contains, to a leading order of the response function, the classical time correlation function of the observable followed by the Weyl-Wigner series; on top of these terms are the periodic-orbit correction terms. The treatment given here starts from linear response assumption of the many-body theory and in its connection with semiclassical theory, it assumes that the one-body quantal system has a classically chaotic dynamics. Applications of the framework are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P Gaspard, D Alonso and I Burghardt,Adv. Chem. Phys. XC, 105 (1995)

    Article  Google Scholar 

  2. M Brack and S R Jain,Phys. Rev. A51, 3462 (1995)

    ADS  Google Scholar 

  3. S R Jain and S V Lawande,Proc. Ind. Natl. Sci. Acad. A61, 275 (1995)

    MathSciNet  Google Scholar 

  4. P van Ede van der Pals and P Gaspard,Phys. Rev. E49, 79 (1994)

    ADS  Google Scholar 

  5. J A Folk, S R Patel, S F Godijn, A G Huibers, S M Cronenwett, C M Marcus, K Campman and A C Gossard,Phys. Rev. Lett. 76, 1699 (1996)

    Article  ADS  Google Scholar 

  6. M Brack,Rev. Mod. Phys. 65, 677 (1993)

    Article  ADS  Google Scholar 

  7. A Dellafiore, F Matera and D M Brink,Phys. Rev. A51, 914 (1995)

    ADS  Google Scholar 

  8. S R Jain, A K Jain and Z Ahmed,Phys. Lett. B370, 1 (1996)

    ADS  MathSciNet  Google Scholar 

  9. D M Brink, A Dellafiore and M Di Toro,Nucl. Phys. A456, 205 (1986)

    ADS  Google Scholar 

  10. H Nishioka, K Hansen and B R Mottelson,Phys. Rev. B42, 9377 (1990)

    ADS  Google Scholar 

  11. V Strutinsky, A G Magner, S R Ofengenden and T Dossing,Z. Phys. A283, 269 (1977)

    Google Scholar 

  12. M C Gutzwiller,Chaos in Classical and Quantum Mechanics (Springer, New York, 1991)

    Google Scholar 

  13. R Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (John Wiley and Sons, Inc., New York, 1974)

    Google Scholar 

  14. A L Fetter and J D Walecka,Quantum Theory of Many-Particle Systems (McGraw Hill Inc., New York, 1971)

    Google Scholar 

  15. B Eckhardt, S Fishman, K Müller and D Wintgen,Phys. Rev. A45, 3531 (1992)

    ADS  Google Scholar 

  16. This famous trick is first known to have been applied by W Pauli (cf. ref. [14]). The relevant reference for the present context is the paper by P Gaspard and S A Rice,Phys. Rev. A48, 54 (1993)

    Google Scholar 

  17. R Artuso, E Aurell and P Cvitanović,Nonlinearity 3, 325, 361 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. P Cvitanović and B Eckhardt,J. Phys. A24, L237 (1991)

  19. P Gaspard and D Alonso Ramirez,Phys. Rev. A45, 8383 (1992)

    ADS  Google Scholar 

  20. Y Colin de Verdière,Compos. Math. 27, 83, 159 (1973)

    MATH  Google Scholar 

  21. J Chazarain,Invent. Math. 24, 65 (1974);Comm. Part. Diff. Eq. 5 (6), 595 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. V P Maslov and M V Fedoriuk,Semiclassical Approximation in Quantum Mechanics (Reidel, Boston MA, 1981)

    Google Scholar 

  23. A Voros,Suppl. Prog. Theor. Phys. 116, 17 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  24. R Balian and C Bloch,Ann. Phys. (New York) 85, 514 (1974)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. R Aurich, M Sieber and F Steiner,Phys. Rev. Lett. 61, 483 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  26. M V Berry and J P Keating,Proc. R. Soc. London A437, 151 (1992)

    ADS  MathSciNet  Google Scholar 

  27. M L Du and J B Delos,Phys. Rev. A38, 1896, 1913 (1988)

    ADS  Google Scholar 

  28. N L Balasz and B K Jennings,Phys. Rep. 104, 347 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  29. D Alonso Ramirez,Semiclassical Quantization and Classically Chaotic Systems, Ph.D. Thesis (Université Libre de Bruxelles, unpublished, 1995)

  30. M V Berry and M Tabor,Proc. R. Soc. London A349, 101 (1976)

    ADS  MathSciNet  Google Scholar 

  31. M V Berry and M Tabor,J. Phys. A10, 371 (1977)

    ADS  Google Scholar 

  32. S C Creagh,Ann. Phys. 248, 60 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. M Pollicott,Invent. Math. 81, 413 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. D Ruelle,Phys. Rev. Lett. 56, 405 (1986)J. Stat. Phys. 44, 281 (1986);J. Diff. Geom. 25, 99, 117 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  35. One can work with action-angle variables for this class of systems which helps in generalizing [29]. A systematic treatment of resonant periodic orbits was initiated by A M Ozorio de Almeida and J H Hannay,J. Phys. A20, 5873 (1987)

    ADS  MathSciNet  Google Scholar 

  36. P Gaspard, S R Jain and P van Ede van der Pals,Time Correlation Functions of Complex Quantum Systems (preprint, 1996)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaspard, P., Jain, S.R. Semiclassical theory for many-body fermionic systems. Pramana - J Phys 48, 503–516 (1997). https://doi.org/10.1007/BF02845659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02845659

Keywords

PACS Nos

Navigation