Skip to main content
Log in

The changes of three components in coelomic fluid ofUrechis unicinctus exposed to different concentrations of sulfide

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The changes in heme (associated with hemoglobin), hemoglobin and hematin in the coelomic fluid of marine worm,Urechis unicinctus, exposed to different concentrations of sulfide, were investigated using biochemical techniques. When exposed to different sulfide concentrations for up to 96 h, the relative amounts of the three components changed in a regular pattern suggesting that the coelomocytes play an important role in the worm's tolerance to sulfide. The possible roles of heme compounds in sulfide tolerance of this species are discussed on the basis of our experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arp, A. J. and J. J. Childress, 1983. Sulfide binding by the blood of the hydrothermal vent worm.Riftia pachyptila.Science 219: 295–297.

    Article  Google Scholar 

  • Arp, A. J., J. J. Childress and R.D. Vetter, 1987. The sulfide-binding protein in the blood of the vestimentiferan tubewormRiftia pachyptila is the extracellular hemoglobin.J. Exp. Biol. 128: 139–158.

    Google Scholar 

  • Arp, A. J., B. M. Hansen and D. Julian, 1992. Burrow environment and coelomic fluid characteristics of the echiuran wormUrechis caupo from populations at three sites in northern California.Mar. Biol. 113: 613–623.

    Article  Google Scholar 

  • Arp, A.J., J. G. Menon and D. Julian, 1995. Multiple mechanisms provide tolerance to environmental sulfide inUrechis caupo.Am. Zool. 35: 132–144.

    Google Scholar 

  • Bonaventura, J. and G. B. Kitto, 1973. Ligand-linked dissociation of some invertebrate hemoglobins.In: L. Bolis, N. K. Schmidt and S. H. P. Maddress eds Comp. Physiol. North-Holland, Amsterdam, p. 216–218.

    Google Scholar 

  • Cline, J. D., 1969. Spectrophotometer determination of hy drogen sulfide in natural waters.Limnol. Oceanogr. 14: 454–458.

    Article  Google Scholar 

  • Doeller, J. E., D. W. Kraus, J. M. Colacino et al., 1998. Gill hemoglobin may deliver sulfide to bacterial symbionts ofSolemy velum (Bivalvia, Mollusca).Biol. Bull. Mar. Boil. Lab., Woods Hole 175: 388–396.

    Article  Google Scholar 

  • Falk, J. E., 1964. Porphyrins and Metalloporphyrins.In: Elsevier, Amsterdam, p.266.

    Google Scholar 

  • Garey, J. R., A. F. Riggs, 1986. The hemoglobin ofUrechis caupo.J. Biol. Chem. 261: 16446–16450.

    Google Scholar 

  • Johnson, K. S., C.L. Beehler and A. Sakamoto 1986. In situ measurement of chemical distributions in deep-sea hydrothermal vent field.Science 231: 1139–1141.

    Article  Google Scholar 

  • Julian, D., E. D. Wendy and A.J. Arp, 1998. Neuromuscular sensitivity to hydrogen sulfide in the marine invertebrateUrechis caupo.J. Exp. Biol. 201:1393–1403.

    Google Scholar 

  • Kang, K. H., 1999. Sediment preference and burrow shape of Spoon worm,Urechis unicinctus in laboratory culture.Korea J. Aquaculture 12(3): 193–196.

    Google Scholar 

  • Keilin, D. 1933. On the combination of methemoglobin with H2S.Proc. R. Soc. Lond. 113B: 393–404.

    Article  Google Scholar 

  • Kraus, D. W., J. E. Doeller and C. S. Powell, 1996. Sulfide may directly modify cytoplasmic hemoglobin deoxygenation inSolemys Reidi Gills.J. Exp. Biol. 199:1343–1352.

    Google Scholar 

  • Li, N., S. L. Song and Y. Z. Tang, 1997. Reproductive biology ofUrechis unicinctus along the coast of Shandong province.Acta Zool. Sini. 43(4): 433–435. (in Chinese)

    Google Scholar 

  • Li, N., S. L. Song and Y. Z. Tang, 1998.Urechis unicinctus.Biol. Bull. 33(8): 12–14. (in Chinese)

    Google Scholar 

  • Lijana, R. C. and M. C. Williams, 1979. Tetramethylbenzidine —A substitute for benzidine in hemoglobin analysis.J. Lab. Clin. Med. 94: 266.

    Google Scholar 

  • Mangum, P. C., R. T. Terwilliger, N. B. Terwilliger et al. 1983. Oxygen binding of intact coelomic cells and extracted hemoglobin of the EchiuranUrechis caupo.Comp. Biochem. Physiol. 76A: 253–257.

    Article  Google Scholar 

  • Powell, M. K. and A. J. Arp, 1989. Hydrogen sulfide oxidation by abundant nonhemoglobin heme compounds in marine invertebrates form sulfide-rich habitats.J. Exp. Zool. 249: 121–132.

    Article  Google Scholar 

  • Standefer, J. C. and D. Vanderjagt, 1977. Use of tetramethylbenzidine in plasma hemoglobin assay.Clin. Chem. 23: 749.

    Google Scholar 

  • Somero, G. N., J. J. Childress and A. E. Anderson, 1989. Transport, metabolism and detoxification of hydrogen sulfide in animals from sulfide-rich marine environment.Crit. Rev. Aquat. Sci. 1: 591–614.

    Google Scholar 

  • Well, R. M. G., N.W. Pankhust, 1980. An investigation into the formation of sulphide and oxidation compounds from the hemoglobin of the lugwormAbarenicola affinis (Ashworth).Comp. Biochem. Physiol. 66C: 255–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Zhifeng.

Additional information

This research was supported by the NSFC-KOSEF scientific cooperation program and NSFC (No. 30271039)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuojun, M., Zhenmin, B., Kyuoung-Ho, K. et al. The changes of three components in coelomic fluid ofUrechis unicinctus exposed to different concentrations of sulfide. Chin. J. Ocean. Limnol. 23, 104–109 (2005). https://doi.org/10.1007/BF02845150

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02845150

Keywords

Navigation