Skip to main content
Log in

The isolation of prophyra-334 from marine algae and its UV-absorption behavior

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Prophyra-334 was prepared by methanol extraction and HPLC methods from marine algae (dried laver). It is a sunscreen compound that has good absorption of ultraviolet radiations in the wavelength ranges of 200–400 nm. The absorption maximum wavelength of prophyra-334 is at 334 nm, so defined the name. The molar extinction coefficient (ε) of prophyra-334 in aqueous solution at 334 nm wavelength is 4.23×104. The absorption of prophyra-334 in organic solvents differs in aqueous solutions. In polar organic solvents, the absorption maximum wavelength of prophyra-334 has a slight shift toward longer wavelength compared with that in pure water. On the contrary, in inert non-polar organic solvents, the absorption maximum wavelength and the shape of absorption spectra of prophyra-334 are changed. The effects of organic solvents on prophyra-334 stability suggested that: (1) the absorbance of prophyra-334 in water is generally constant at temperature of 60°C in 24 h, meaning that prophyra-334 is quite stable in water; (2) the absorbance of prophyra-334 in ethanol and hexane decreases at the same condition. The stability of prophyra-334 in organic solvents is less than that in aqueous solution. In benzene, the prophyra-334 is very instable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrapidis-Paloympis, L. E., R. A. Nash and N. A. Shaath, 1987. The effect of solvents on the ultraviolet absorbance of sunscreens.J. Soc. Cosmet. Chem. 38: 209–221.

    Google Scholar 

  • Andrady, A. L., S. H. Hamid, X. Hu and A. Torikai, 1998. Effects of increased solar ultraviolet radiation on materials.J. Photochem. Photobiol. B:Biol. 46: 96–103.

    Article  Google Scholar 

  • Banaszak, A. T. and R. K. Trench, 1995. Effects of ultraviolet (UV) radiation on marine microalgal-invertebrate symbioses. II. The synthesis of mycosporine-like amino acids in response to exposure to UV in Anthopleura elegantissima and Cassiopeia xamachana.J. Exp. Mar. Bio. Ecol. 194: 233–250.

    Article  Google Scholar 

  • Banaszak, A. T., M. P. Lesser, I. B. Kuffiner and M. Ondrusek, 1998. Relationship between ultraviolet (UV) radiation and mycosporine-like amino acids (MAAS) in marine organisms.Bull. Mar. Soc. 63: 617–628.

    Google Scholar 

  • Bandaranayake, W. M., B. E. Chalker and W. C. Dunlap, 1992. Research on photochemical behavior of marine algae.In: Cruz, L. J., G. P. Concepcion, M. A. S. Mendigo and B. Q. Guevara, eds. Proceedings of the Seventh Asian Symposium on Medicinal Plants, Spices and other Natural Products. ASOMPS VII. Manila, Philippines, supplement, p. 31–32.

  • Bandaranayake, W. M., 1998. Mycosporines: Are They Nature's Sunscreens.Natural Product Reports 15: 159–172.

    Article  Google Scholar 

  • Carreto, J. J., M. O. Carignan, G. Daleo and S. G. De Marco, 1990. Occurrence of mycosporine-like amino acids in red tide dinoflagellateAlexandrium excavatum: UV-protective compounds?J. Planton Res. 12: 909–921.

    Article  Google Scholar 

  • Crutzen, P. J., 1992. Ultraviolet on the increase.Nature 356: 104–105.

    Article  Google Scholar 

  • Diffey, B. L., 1991. Solar ultraviolet radiation effects on biological systems.Physics in Medicine Biol. 36(3): 299–328.

    Article  Google Scholar 

  • Dunlap, W. C. and B. E. Chalker, 1985. International and Patent Application PCT/AU85/00242, Publication No. WO/86/02350, Australian Patent 587211, to Australian Institute of Marine Science.

  • Dunlap, W. C., B. E. Chalker and W. M. Bandaranayake, 1989. Survey of mycosporine-like amino acid compounds in marine organism.In: Chavez, A. Eds. Proceedings of the Workshop Australia-Mexico on Marine Science. Mexico, pp. 229–238.

  • Grobe, C. W. and T. M. Murphy, 1998. Solar ultraviolet-B radiation effects on growth and pigment composition of the intertidal alga Ulva expansa (Setch.) S. & G. (Chlorophyta),J. Exper. Mar. Bio. Eco. 225(1): 39–51.

    Article  Google Scholar 

  • Groves, G., 1975. Evaluation of solar protective preparations.Cosmet. Perf. 90: 36–50.

    Google Scholar 

  • Harm, W., 1980. Biological Effects of Ultraviolet Radiation. Cambridge University Press, Cambridge.

  • Helbling, E. W., E. S. Barbieri, R. P. Sinha, V. E. Villafañe and D.-P. Häder, 2004. Dynamics of potentially protective compounds in Rhodophyta species from Patagonia (Argentina) exposed to solar radiation.J. Photochem. Photobiol. B: Biol. 75: 63–71.

    Article  Google Scholar 

  • Karentz, D., F. S. McEuen, M. C. Land and W. C. Dunlap, 1991. Survey of mycosporine-like amino acid compounds in Antarctic marine organism: potential protection from ultraviolet exposure.Mar. Biol. 108: 157–166.

    Article  Google Scholar 

  • Karsten, U., T. Sawall and C. Wiebcke, 1998a. A survey of the distribution of UV-absorbing substances in tropical macroalgae.Phycol. Res. 46: 271–279.

    Google Scholar 

  • Karsten, U., T. Sawall, D. Hanelt, K. Bischof, F. L. Figueroa, A. Flores-Moya and C. Wiencke, 1998b. An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm-temoerate regions.Bot. Mar. 41: 443–453.

    Article  Google Scholar 

  • Kerr, J. B. and C. T. McElroy, 1993. Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion.Science 262: 1032–1034.

    Article  Google Scholar 

  • Klisch, M. and D.-P. Häder, 2002. Wavelength dependence of mycosporine-like amino acid sythesis inGyrodinium dorsum.J. Photochem. Photobiol. B: Biol. 66: 60–66.

    Article  Google Scholar 

  • Kouwenberg, J. H. M., H. I. Browman, J. A. Runge, J. J. Cullen, R. F. Davis and J.-F. ST-Pierre, 1999. Biological weighting of ultraviolet (280–400 nm) induced mortality in marine zooplankton and fish. IICalanus finmarchicus (Copepoda) eggs.Mar. Biol. 135: 285–293.

    Article  Google Scholar 

  • Longstreth, J., F. R. de Gruijl, M. L. Kripke, S. Abseck, F. Arnold, H. I. Slaper, G. Velders, Y. Takizawa and J. C. van der Leun, 1998. Heath risks.J. Photochem. Photobiol. B:Biol. 46: 20–39.

    Article  Google Scholar 

  • Madronich, S., R. L. McKenzie, M. M. Caldwell, L. O. Björn and M. M. Caldwell, 1998. Changes in biologically active ultraviolet radiation reaching the Earth's surface.J. Photochem. Photobiol. B:Biol. 46: 5–19.

    Article  Google Scholar 

  • Misonou, T., J. Saito, S. Oshiba, Y. Tokimoto, M. Maegawa, Y. Inoue, H. Hori and T. Sakurai, 2003. UV-Absorbing substance in the red alga Porphyra yezoensis (Bangiales, Rhodophyta) block thymine photodimer production.Mar. Biotechnol. 5: 194–200.

    Article  Google Scholar 

  • Ogawa, H., 2002. Current status and future prospects of sea algae products available today.In: Ogawa, H. and M. Notoya eds. Prospects of Quality, Processing and Distribution of Sea Algae Products for Human Food. Kouseisyakouseikaku, Tokyo, p. 9–16.

    Google Scholar 

  • Rabek, J. F., 1995. Polymer Photodegradation, Chapman and Hall, London, England. pp. 655.

    Google Scholar 

  • Riegelman, S. and R. P. Penna, 1960. Effect of vehicle components on the absorption characteristics of sun screen compounds.J. Soc. Cosmet. Chem. 11: 280–291.

    Google Scholar 

  • Scott, G., 1990. Polymer Degradation and Stabilization, Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Shaath, N. A., 1987. On the theory of ultraviolet absorption by sunscreen chemicals.J. Soc. Cosmet. Chem. 82: 193–207.

    Google Scholar 

  • Shaath, N. A., 1986. The chemistry of sunscreens.Cosmetics and Toiletres 101: 55–70.

    Google Scholar 

  • Sinha, R. P., M. Klisch, A. Gröniger and D.-P. Häder, 1998. Ultraviolet absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae.J. Photochem. Photobiol. B: Biol. 47: 83–94.

    Article  Google Scholar 

  • Takano, S., A. Nakanishi, D. Uemura and Y. Hirata, 1979. Isolation and structure of a 334 nm UV-absorbing substance, porphyra-334 from the red alga Porphyratenera Kjellman. Chem. Lett. 419–420.

  • Vaughan, C. D., 1985. Using solubility parameters in cosmetics formulation.J. Soc. Cosmet. Chem. 36: 319–333.

    Google Scholar 

  • Worrest, R. C., 1982. Review of the literature concerning the impact of UV-B radiation upon marine organsms.In: Calkins, J. eds. The Role of Solar Ultraviolet Radiation in Marine Ecosystems. Plenum Press, New York, p. 429–457.

    Google Scholar 

  • Wypych, J., 1990. Weathering Handbook. Chemtee Publishing, Toronto, Canada, p. 512.

    Google Scholar 

  • Yakovleva, I. M. and E. A. Titlyanov, 2001. Effect of high visible and UV irradiance on subtidalChondrus crispus: stress, photoinhibition and protective mechanisms.Aquatic Botany 71(1): 47–61.

    Article  Google Scholar 

  • Zhang, Z., X. Gao, Y. Tahiro, S. Matsukawa and H. Ogawa, 2004. Researches on the stability of porphyra-334 solution and its influence factors.J. Ocean Univ. China 3(2): 166–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Zhaohui.

Additional information

This study was supported by SRF for ROCS, SEM and Natural Science Foundation of Qingdao (No. 04-2-JZ-110).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhaohui, Z., Xin, G., Tashiro, Y. et al. The isolation of prophyra-334 from marine algae and its UV-absorption behavior. Chin. J. Ocean. Limnol. 23, 400–405 (2005). https://doi.org/10.1007/BF02842683

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02842683

Key words

Navigation