Skip to main content
Log in

The developmental evolution of avian digit homology: An update

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

The identity of avian digits has been unresolved since the beginning of evolutionary morphology in the mid-19th century, i.e. as soon as questions of phylogenetic homology have been raised. The main source of concern is the persistent discrepancy between anatomical/paleontological and embryological evidence over the identity of avian digits. In this paper, recent evidence pertaining to the question of avian digit homology is reviewed and the various ideas of how to resolve the disagreement among developmental and phylogenetic evidence are evaluated. Paleontological evidence unequivocally supports the hypothesis that the fully formed digits of maniraptoran theropods are digits DI, DII, and DIII, because the phylogenetic position ofHerrerasaurus is resolved, even when hand characters are excluded from the analysis. Regarding the developmental origin of the three digits of the avian hand the discovery of an anterior digit condensation in the limb bud of chickens and ostriches conclusively shows that these three digits are developing from condensations CII, CIII, and CIV. The existence of this additional anterior condensation has been confirmed in four different labs, using four different methods: Alcian blue staining, PNA affinity histochemistry, micro-capillary regression andSox9 expression. Finally, recent evidence shows that the digit developing from condensation CII has a Hox gene expression pattern that is found in digit DI of mice forelimb and chick hind limbs. The sum of these data supports the idea that digit identity has shifted relative to the location of condensations, known as Frame Shift Hypothesis, such that condensation CII develops into digit DI and condensation CIII develops into digit DII, etc. A review of the literature on the digit identity of the Italian Three-toed Skink orLuscengola (Chalcides chalcides), shows that digit identity frame shifts may not be limited to the bird hand but may be characteristic of “adaptive” digit reduction in amniotes (sensu Steiner, H., Anders, G., 1946. Zur Frage der Entstehung von Rudimenten. Die Reduktion der Gliedmassen vonChalcides tridactylus Laur. Rev. Suisse Zool. 53, 537–546) in general. In this mode of evolution two digits are lost, in the course of the adaptation of the three anterior digits to a function that does not require the two posterior digits. This evidence suggests that the evolution of digits in tetrapods can proceed at least on two distinct levels of integration, the level of digit condensations and that of adult digits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amundson, R., 2005. The Changing Role of the Embryo in Evolutionary Thought: Roots of Evo-Devo. Cambridge University Press, Cambridge.

    Google Scholar 

  • Benedetto, J.L., 1973. Herrerasauridae, nueva familia de sarisquios triscos. Ameghiniana 10, 89–102.

    Google Scholar 

  • Brandley, M.C., Schmitz, A., et al., 2005. Partitioned Bayesian analysies, partion choice and the phylogenetic relationships of Scincid lizards. Syst. Biol. 54, 373–390.

    Article  PubMed  Google Scholar 

  • Braus, H., 1906. Die Entwicklung der Form der Extremitäten und des Extremitätenskeletts. Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere. O. Hertwig. Jena, Gustav Fisher 3 (part 2), 167–338.

    Google Scholar 

  • Bruno, S., Maugeri, S., 1976. Rettili d’Italia: Tartarughe e Sauri. I.A. Martello, Firenze, Italia.

    Google Scholar 

  • Burke, A.C., Alberch, P., 1985. The development and homology of the chelonian carpus and tarsus. J. Morph. 186, 119–131.

    Article  Google Scholar 

  • Burke, A.C., Feduccia, A., 1997. Developmental patterns and the identification of homologies in the avian hand. Science 278, 666–668.

    Article  CAS  Google Scholar 

  • Caputo, V., Lanza, B., et al., 1995. Body elongation and limb reduction in the genusChalcides Laurenti 1768 (Squamata Scincidae): a comparative study. Trop. Zool. 8, 95–152.

    Google Scholar 

  • Carroll, S.B., Grenier, J.K., et al., 2001. From DNA to Diversity, Blackwell Science, Malden, MA.

    Google Scholar 

  • Chatterjee, S., 1998. Counting the fingers of birds and dinosaurs. Science 280, 355a.

    Article  Google Scholar 

  • Colbert, E., 1970. A saurischian dinosaur from the Triassic of Brazil. Am. Mus. Novitates 2405, 1–39.

    Google Scholar 

  • Dahn, R.D., Fallon, J.F., 2000. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science 289, 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Dunlop, L.-L.T., Hall, B.K., 1995. Relationships between cellular condensation, preosteoblast formation and epithelial-mesenchymal interactions in initiation of osteogenesis. Int. J. Dev. Biol. 39, 357–371.

    PubMed  CAS  Google Scholar 

  • Fabrezi, M., 2001. A survey of prepollex and prehallux variation in anuran limbs. Zool. J. Linn. Soc. 131, 227–248.

    Article  Google Scholar 

  • Feduccia, A., Nowicki, J., 2002. The hand of birds revealed by early ostrich embryos. Naturwissenschaften 89, 391–393.

    Article  PubMed  CAS  Google Scholar 

  • Feduccia, A., 1996. The Origin and Evolution of Birds. Yale University Press, New Haven.

    Google Scholar 

  • Feduccia, A., 1999, 1,2,3=2,3,4: accommodating the cladogram. Proc. Natl. Acad. Sci. USA 96, 4740–4742.

    Article  PubMed  CAS  Google Scholar 

  • Feduccia, A., 2001. Digit homology of birds and dinosaurs: accommodating the cladogram. TrEE 16, 285–286.

    PubMed  Google Scholar 

  • Feduccia, A., Nowicki, J., 2002. The hand of birds revealed by early ostrich embryos. Naturwissenschaften 89, 391–393.

    Article  PubMed  CAS  Google Scholar 

  • Fürbringer, M., 1870. Die Knochen und Muskeln der Extremitäten bei den schlangenähnlichen Sauriern: Vergleichend Anatomische Abhandlung. Verlag von Wilhelm Engelmann, Leipzig.

    Google Scholar 

  • Galis, F., Kundrát, M., et al., 2005. Hox genes, digit identities and the theropod/bird transition. J. Exp. Zool. Part B (Mol. Dev. Evol.), 304B, 198–205.

    Article  CAS  Google Scholar 

  • Galis, F., Kundrát, M., et al., 2003. An old controversy solved: bird embryos have five fingers. TrEE 18, 7–9.

    Google Scholar 

  • Garner, J.P., Thomas, A.L.R., 1998. Counting the fingers of birds. Science 280, 355.

    Article  Google Scholar 

  • Gauthier, J., 1986. Saurischian monophyly and the origin of birds. Mem. Calif. Acad. Sci. 8, 1–55.

    Google Scholar 

  • Grandel, H., Schulte-Merker, S., 1998. The development of the paired fins the Zebrafish (Danio rerio). Mech. Dev. 79, 99–120.

    Article  PubMed  CAS  Google Scholar 

  • Greer, A.E., 1991. Limb reduction in Squamates: identification of the lineages and discussion of the trends. J. Herpetol. 25, 166–173.

    Article  Google Scholar 

  • Greer, A.E., Caputo, V., et al., 1998. Observations on limb reduction in the Scincid lizard genusChalcides. J. Herpetol. 32, 244–252.

    Article  Google Scholar 

  • Hall, B.K., 1994. Homology and embryonic development. In: Hecht, M.K., MacIntyre, R.J., Clegg, M.T. (Eds.), Evolutionary Biology, vol. 28. Plenmum Press, New York, pp. 1–30.

    Google Scholar 

  • Hall, B.K., 1998. Evolutionary Developmental Biology. Chapman & Hall, London.

    Google Scholar 

  • Hall, B.K., Miyake, T., 1995. Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int. J. Dev. Biol. 39, 881–893.

    PubMed  CAS  Google Scholar 

  • Heiss, H., 1957. Beiderseitige kongenitale daumenlose Fünffingerhand bei Mutter und Kind. Z. Anat. Entwicklungsgesch. 120, 226–231.

    Article  PubMed  CAS  Google Scholar 

  • Hinchliffe, J., 1977. The chondrogenic pattern in chick limb morphogenesis: a problem of development and evolution. In: Ede, D.A., Hinchliffe, J.R., Balls, M. (Eds.), Vertebrate Limb and Somite Morphogenesis. Cambridge University Press, Cambridge, UK, pp. 293–309.

    Google Scholar 

  • Hinchliffe, J.R., Griffiths, P.J., 1983. The prechondrogenic patterns in tetrapod limb development and their phylogenetic significance. In: Goodwin, B.C., Holder, N., Wylie, C.C. (Eds.), Development and Evolution. Cambridge University Press, Cambridge, pp. 99–121.

    Google Scholar 

  • Hinchliffe, J.R., Hecht, M., 1984. Homology of the bird wing skeleton. Evol. Biol. 20, 21–37.

    Google Scholar 

  • Hinchliffe, J.R., Johnson, D.R., 1980. The Development of the Vertebrate Limb. Oxford University Press, New York.

    Google Scholar 

  • Hiraki, Y., Shukunami, C., 2000. Chondromodulin-I as a novel cartilcage-specific growth-modulating factor. Pediatr. Nephrol. 14, 602–605.

    Article  PubMed  CAS  Google Scholar 

  • Holtz Jr., T.R., 1995. A new phylogeny of the Theropoda. J. Vert. Paleont. 15, 35A.

    Article  Google Scholar 

  • Joachimsthal, G., 1900. Verdoppelung des linken Zeigefingers und Dreigliederung des rechten Daumens. Berl. Klin. Wochenschr. 37, 835–838.

    Google Scholar 

  • Kundrát, M., Seichert, V., et al., 2001. Developmental remnants of the first avian metacarpus. J. Morphol. 248, 252A.

    Google Scholar 

  • Kundrát, M., Seichert, V., et al., 2002. Pentadactyl pattern of the avian wing autopodium and pyramid reduction hypothesis. J. Exp. Zool. (Mol. Dev. Evol.) 294, 152–159.

    Article  Google Scholar 

  • Larsson, H.C.E., Wagner, G.P., 2002. The pentadactyl ground state of the avian wing. J. Exp. Zool. (Mol. Dev. Evol.) 294, 146–151.

    Article  Google Scholar 

  • Litingtung, Y., Dahn, R.D., et al., 2002. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979–983.

    Article  PubMed  CAS  Google Scholar 

  • Montagna, W., 1945. A re-investigation of the development of the wing of the bird. J. Morphol. 76, 87–118.

    Article  Google Scholar 

  • Müller, G.B., Alberch, P., 1990. Ontogeny of the limb skeleton inAlligator mississippiensis: Developmental invariance and change in the evolution of Archosaur limbs. J. Morphol. 203, 151–164.

    Article  Google Scholar 

  • Novas, F.E., 1993. New Information on the systematics and postcranial skeleton ofHerrerasaurus ischigualastensis (Theropoda: Herrerasauridae) from the Ischigualasto formation (Upper Triassic) of Argenita. J. Vert. Paleont. 13, 400–423.

    Article  Google Scholar 

  • Novas, F.E., 1997. Herrerasauridae. In: Currie, P.J. Padian, K. (Eds.), Encyclopedia of Dinosaurs. Academic Press, San Diego.

    Google Scholar 

  • Nyhart, L.K., 1995. Bioloy Takes Form. Animal Morphology and the German Universities, 1800–1900. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Nyhart, L.K., 2002. Learning from history: morphology’s challenges in Germany ca. 1900. J. Morphol. 252, 2–14.

    Article  PubMed  Google Scholar 

  • Orsini, J.-P., Cheylan, M., 1981.Chalcides chalcides (Linnaeus 1758)—Erzschleiche. In: Böhme, W. (Ed.), Handbuch der Reptilien und Amphibien Europas, vol. 1. Akademische Verlagsgesellschaft, Wiesbaden, pp. 318–337.

    Google Scholar 

  • Padian, K., 1992. A proposal to standartize tetrapod phalangeal formula designations. J. Vert. Paleontol. 12, 260–262.

    Article  Google Scholar 

  • Padian, K., May, C.L., 1993. The earliest dinosaurs. New Mexico Museum of Natural History & Science Bull 3, 379–381.

    Google Scholar 

  • Prum, R.O., 2002. Why ornithologists should care about the theropod origin of birds. Auk 119, 1–17.

    Article  Google Scholar 

  • Qazi, Q., Kassner, E.G., 1988. Triphalangeal thumb. J. Med. Genet. 25, 505–520.

    PubMed  CAS  Google Scholar 

  • Raff, R., 1996. The Shape of Life. Chicago University Press, Chicago, IL.

    Google Scholar 

  • Raynaud, A., Clergue-Gazeau, M., 1986. Identification des doigts reduits ou manquanta dans les pattes des embryons de lezard vert (Lacerta viridis) tarites par la cytosine-arabinofuranoside. Camparaison avec les derductions digitales naturalles des speces de reptiles sependtiformes. Arch. Biol. (Bruxelles) 97, 279–299.

    Google Scholar 

  • Raynaud, A., Clergue-Gazeau, M., et al., 1986. Remarques preliminaires sur la structure de la patte du Seps tridactyle (Chalcides chalcides, L.). Bull. Soc. Hist. Nat., Toulouse 122, 109–111.

    Google Scholar 

  • Reig, O.A., 1963. La presencia de dinosaurios saurisquios en los “Estratos de Ischigualasto” (Mesotriasico superior) de las procvincias de San Juan y La Rioja (Republica Argentina). Ameghiniana 3, 3–20.

    Google Scholar 

  • Renous-Lecuru, S., 1973. Morphologie comparee du carpe chez les Lepidosauriens actuels (Rhynchocephales, Lacertilens, Amphisbeniens). Gegenbaurs Morphol. Jahrb., Leipzig 119, 727–766.

    CAS  Google Scholar 

  • Riddle, R.D., Johnson, R.L., et al., 1993. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzbach, M., 1980. Alfred Wegener und die Drift der Kontinente. Wissenschaftliche Verlagsgesellschaft, Stuttgart.

    Google Scholar 

  • Seichert, V., Rychter, Z., 1972. Vascularization of developing anterior limb of the chick embryo II. Differentiation of vascular bed and its significance for the location of morphogenetic processes inside the limb bud. Folia Morphol. (Warsz.) 19, 352–361.

    Google Scholar 

  • Sereno, P.C., 1993. Dinosaurian percursors from the Middle Triassic of Argentina:Lagerpeton chanarensis. J. Vert. Paleo. 13, 385–399.

    Article  Google Scholar 

  • Sereno, P., 1994. The pectoral girdle and forelimb of the basal theropodHerrerasaurus ischigualestensis. J. Vert. Paleont. 13 (4), 425–450.

    Article  Google Scholar 

  • Sereno, P.C., 1999a. The evolution of dinosaurs. Science 284, 2137–2147.

    Article  PubMed  CAS  Google Scholar 

  • Sereno, P.C., 1999b. A rationale for dinosaurian taxonomy. J. Vert. Paleont. 19, 788–790.

    Article  Google Scholar 

  • Sereno, P.C., Novas, F.E., 1992. The complete skull and skeleton of an early dinosaur. Science 258, 1137–1140.

    Article  PubMed  CAS  Google Scholar 

  • Sereno, P.C., Foster, C.A., et al., 1993. Primitive dinosaur skeleton from Argentina and the early evolution of Dinosauria. Nature 361, 64–66.

    Article  Google Scholar 

  • Sewertzoff, A.N., 1931. Studien über die Reduktion der Organe der Wirbeltiere. Zool. Jahrbuch; Abt.f. Anatomie, Jena 53, 611–699.

    Google Scholar 

  • Shubin, N.H., 1994. The phylogeny of development and the origin of homology. In: Grande, L., Rieppel, O. (Eds.), Interpreting the Hierarchy of Nature. Academic Press, San Diego.

    Google Scholar 

  • Shubin, N.H., Alberch, P., 1986. A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evol. Biol. 20, 319–387.

    Google Scholar 

  • Steiner, H., 1934. Über die embryonale Hand- und Fuss-Skelettanlage bei den Crocodiliern, sowie über ihre Beziehung zur Vogel-Flügelanlage und zur ursprünglichen Tetrapoden-Extremität. Rev. Suisse Zool. 41, 383–396.

    Google Scholar 

  • Steiner, H., Anders, G., 1946. Zur Frage der Entstehung von Rudimenten. Die Reduktion der Gliedmassen vonChalcides tridactylus Laur. Rev. Suisse Zool. 53, 537–546.

    Google Scholar 

  • Swanson, A.B., Brown, K.S., 1962. Hereditary triphalangeal thumb. J. Heredity 53, 259–265.

    Google Scholar 

  • Vargas, A., Fallon, J.F., 2005. Birds have dinosaur wings: the molecular evidence. J. Exp. Zool. Part B (Mol. Dev. Evol.) 304B, 86–90.

    Article  CAS  Google Scholar 

  • Wagner, G.P., Gauthier, J.A., 1999. 1,2,3=2,3,4: A solution to the problem of the homology of the digits in the avian hand. PNAS 96, 5111–5116.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G.P., Misof, B.Y., 1993. How can a character be developmentally constrained despite variation in developmental pathways? J. Evol. Biol. 6, 449–455.

    Article  Google Scholar 

  • Warm, A., Pietro, C.d., et al., 1988. Non-opposable triphalangeal thumb in an Italian family. J. Med. Genet. 25, 337–339.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, K.M., Fullterton, S.M., 2000. Phenotypic drift and the evolution of genotype-phenotype relationships. Theor. Pop. Biol. 57, 187–195.

    Article  CAS  Google Scholar 

  • Welscher, P.t., Zuniga, A., et al., 2002. Progression of vertebrate limb development through Shh-mediated counteraction of GLI3. Science 298, 287–830.

    Article  CAS  Google Scholar 

  • Welten, M.C.M., Verbeek, F.J., et al., 2005. Gene expression and digit homology in the chicken embryo wing. Evol. Dev. 7, 18–28.

    Article  PubMed  CAS  Google Scholar 

  • Zschabitz, A., 1998. Glycoconjugate expression and cartilage development of the cranial skeleton. Acta Anat. 61, 254–274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter P. Wagner.

Additional information

From the 46th “Phylogenetisches Symposium”, Jena, Germany, November 20–21, 2004. Theme of the symposium: “Evolutionary developmental biology—new challenges to the homology concept?”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, G.P. The developmental evolution of avian digit homology: An update. Theory Biosci. 124, 165–183 (2005). https://doi.org/10.1007/BF02814482

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814482

Keywords

Navigation