Skip to main content
Log in

Rhizome architecture inPhragmites australis in relation to water depth: Implications for within-plant oxygen transport distances

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Phragmites australis (Cav.)Trin. exSteud. is a perennial plant, largely relying on its rhizomes for resource storage, spreading and anchorage in the substrate. Vertical distribution and length of horizontal rhizomes ofPhragmites australis were investigated at the reed bed edge in a lake in southern Sweden. In deep water, horizontal rhizomes were relatively short and superficially situated in the substrate. It is hypothesised that this is an adaptation to water depth by keeping O2-transport distances through shoots and rhizomes as short as possible. In shallow water,P. australis rhizomes generally penetrated deeply into the substrate, probably improving anchorage and nutrient uptake possibilities. Further, horizontal rhizomes were longer in shallow water, which may increase the rate of vegetative spread. Because of these changes in rhizome architecture, “critical within-plant oxygen transport distances” did not change with water depth. This indicates thatP. australis maximises the extension of its rhizomes in relation to spatial differences in water depth. This may limit the ability ofP. australis to tolerate sudden temporal increases in water depth or eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong W. (1978): Root aeration in the wetland condition. In:Hook D.D. &Crawford R.M.M. (eds.)Plant life in anaerobic environments, Ann Arbor Science, Ann Arbor, pp. 269–298.

    Google Scholar 

  • Armstrong J. &Armstrong W. (1991): A convective through-flow of gases inPhragmites australis (Cav.) Trin exSteud.Aquatic Bot. 39: 75–88.

    Article  Google Scholar 

  • Armstrong J., Armstrong W. &Beckett P.M. (1992):Phragmites australis: venturi-and humidity-induced convections enhance rhizome aeration and rhizosphere oxygenation.New Phytol. 120: 197–207.

    Article  Google Scholar 

  • Björk S. (1967): Ecological investigations ofPhragmites communis, Folia Limnol. Scand. 14: 1–248.

    Google Scholar 

  • Boad R.R. &Crook C.E. (1985): Investigations into the causes of reedswamp regression in the Norfolk Broads.Verh. Int. Verein Limnol. 22: 2916–2919.

    Google Scholar 

  • Boar R.R., Crook C.E. &Moss B. (1989): Regression ofPhragmites australis reedswamps and recent changes of water chemistry in the Norfolk Broadland, England.Aquatic Bot. 35: 41–55.

    Article  CAS  Google Scholar 

  • Boorman L.A. &Fuller R.M. (1981): The changing status of reedswamp in the Norfolk Broads.J. Appl. Ecol. 18: 241–269.

    Article  Google Scholar 

  • Čížková-Končalová H., Květ J. &Thompson K. (1992): Carbon starvation: a key to reed decline in eutrophic lakes.Aquatic Bot. 43: 105–113.

    Article  Google Scholar 

  • Chapin F.S. (1980): The mineral nutrition of wild plants.Annual Rev. Ecol. Syst. 11: 233–260.

    Article  CAS  Google Scholar 

  • Coops H. &Smit H. (1991): Effects of various water depths onScirpus maritimus L.: Field and experimental observations.Verh. Int. Verein Limnol. 24: 2706–2710.

    Google Scholar 

  • Crawford R.M.M. (1992): Oxygen availability as an ecological limit to plant distribution.Advances Ecol. Res. 23: 93–185.

    CAS  Google Scholar 

  • Dykyjová D. &Hradecká D. (1976): Production ecology ofPhragmites communis. 1. Relations of two ecotypes to the microclimate and nutrient conditions of habitat.Folia Geobot. Phytotax. 11: 23–61.

    Google Scholar 

  • Fiala K. (1976): Underground organs ofPhragmites communis, their growth, biomass and net production.Folia Geobot. Phytotax. 11: 225–259.

    Google Scholar 

  • Fiala K. (1978): Seasonal development of helophyte polycormones and relationship between underground and aboveground organs. In:Dykyjová D. &Květ J. (eds.),Pond littoral ecosystems, Springer-Verlag Berlin, pp. 174–181.

    Google Scholar 

  • Fiala K. &Květ J. (1971): Dynamic balance between plant species in South Moravian reedswamps. In:Duffey E. &Watt A.S. (eds.),The scientific management of animal and plant communities for conservation, Blackwell Scientific Publications, Oxford, pp. 241–269.

    Google Scholar 

  • Grace J. (1989): Effects of water depth onTypha latifolia andTypha domingensis.Amer. J. Bot. 76: 762–768.

    Article  Google Scholar 

  • Granéli W., Weisner S.E.B. &Sytsma M.D. (1992): Rhizome dynamics and resource storage inPhragmites australis.Wetlands Ecol. Managem. 1: 239–247.

    Google Scholar 

  • Haslam S.M. (1969): Stem types ofPhragmites communis Trin.Ann. Bot. 33: 127–131.

    Google Scholar 

  • Haslam S.M. (1973): Some aspects of the life history and autecology ofPhragmites communis Trin A. review.Polish Arch. Hydrobiol. 20: 79–100.

    Google Scholar 

  • Hürlimann H. (1951): Zur Lebensgeschichte des Schilfs an den Ufern der Schweizer Seen.Beir. Geobot. Landesaufn. Schweiz. 30: 1–232.

    Google Scholar 

  • Iwasa Y. &Roughgarden J. (1984): Shoot/root balance of plants: optimal growth of a system with many vegetative organs.Theor. Populat. Biol. 25: 78–104.

    Article  Google Scholar 

  • Klötzli F. (1971): Biogenous influence on aquatic macrophytes, especiallyPhragmites communis.Hidrobiologia 12: 107–111.

    Google Scholar 

  • Krumscheid P., Stark H. &Peintinger M. (1989): Decline of reed at Lake Constance (Obersee) since 1967 based on interpretations of aerial photographs.Aquatic Bot. 35: 57–62.

    Article  Google Scholar 

  • Ostendorp W. (1989): “Die-back” of reeds in Europe—a critical review of literature.Aquatic Bot. 35: 5–26.

    Article  Google Scholar 

  • Rodewald-Rudesco L. (1974): Das SchilfrohrPhragmites communis Trinius.Binnengewässer 27: 1–302.

    Google Scholar 

  • Roman T., Roman L., Raduca C. &Molnar A. (1985): Die Einwirkung einiger Umweltfaktoren des Donaudeltas auf die Abgrenzung des Lebensraumes von Schilf-, Rohrkolben- und Seggengesellschaften.Arch. Hydrobiol. Suppl. 68: 149–162.

    Google Scholar 

  • Schröder R. (1987): Das Schilfsterben am Bodensee—Untersee. Beobachtungen, Untersuchungen und Gegenmassnahmen.Arch. Hydrobiol. Suppl. 76: 53–99

    Google Scholar 

  • Schierup H.-H. (1978): Biomass and primary production in aPhragmites communis Trin. swamp in North Jutland, Denmark.Verh. Int. Verein Limnol. 20: 94–99.

    Google Scholar 

  • Shay J.M. &Shay C.T. (1986): Prairie marshes in western Canada, with specific reference to the ecology of five emergent macrophytes.Canad. J. Bot. 64: 443–454.

    Article  Google Scholar 

  • Soukupová L. (1994): Allocation plasticity and modular structure in clonal graminoids in response to waterlogging.Folia Geobot. Phytotax. 29: 227–236.

    Google Scholar 

  • Squires L. &van der Valk A.G. (1992): Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba.Canad. J. Bot. 70: 1860–1867.

    Article  Google Scholar 

  • Strand J. (1992):Effects of water depth on the biomass allocation of Phragmites australis.A possible explanation for the distribution patterns of reed vegetation in lakes. M. Sc. thesis, Lund University.

  • Sukopp H. &Markstein B. (1989): Changes of the reed beds along the Berlin Havel, 1962–1987,Aquatic Bot. 35: 27–39.

    Article  Google Scholar 

  • Ulrich K.E. &Burton T.M. (1985): The effects of nitrate, phosphate and potassium fertilization on growth and nutrient uptake patterns ofPhragmites australis (Cav.)Trin exSteudel.Aquatic Bot. 21: 53–62.

    Article  Google Scholar 

  • Waters I. &Shay J.M. (1992): Effect of water depth on population parameters of aTypha glauca stand.Canad. J. Bot. 70: 349–351.

    Article  Google Scholar 

  • Weisner S.E.B. (1987): The relation between wave exposure and distribution of emergent vegetation in a eutrophic lake.Freshwater Biol. 18: 537–544.

    Article  Google Scholar 

  • Weisner S.E.B. (1988): Factors affecting the internal oxygen supply ofPhragmites australis (Cav.) Trin. exSteudel in situ.Aquatic Bot. 31: 329–335.

    Article  Google Scholar 

  • Weisner S.E.B. (1991): Within-lake patterns in depth penetration of emergent vegetation.Freshwater Biol. 26: 133–142.

    Article  Google Scholar 

  • Weisner S.E.B. &Granéli W. (1989): Influence of substrate conditions on the growth ofPhragmites australis after a reduction in oxygen transport to below-ground parts.Aquatic Bot. 35: 71–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan E. B. Weisner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisner, S.E.B., Strand, J.A. Rhizome architecture inPhragmites australis in relation to water depth: Implications for within-plant oxygen transport distances. Folia Geobot 31, 91–97 (1996). https://doi.org/10.1007/BF02803998

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803998

Keywords

Navigation