Skip to main content
Log in

The Gaussian primes contain arbitrarily shaped constellations

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We show that the Gaussian primesP[i] ⊆ ℤ[i] contain infinitely constellations of any prescribed shape and orientation. More precisely, we show that given any distinct Gaussian integersv 0,…,v k−1, there are infinitely many sets {a+rv 0,…,rv k−1}, witha ∈ℤ[i] andr ∈ℤ{0}, all of whose elements are Gaussian primes.

The proof is modeled on that in [9] and requires three ingredients. The first is a hypergraph removal lemma of Gowers and Rödl-Skokan or, more precisely, a slight strenghthening of this lemma which can be found in [22]; this hypergraph removal lemma can be thought of as a generalization of the Szemerédi-Furstenberg-Katznelson theorem concerning multidimensional arithmetic progressions. The second ingredient is the transference argument from [9], which allows one to extend this hypergraph removal lemma to a relative version, weighted by a pseudorandom measure. The third ingredient is a Goldston-Yildirim type analysis for the Gaussian integers, similar to that in [9], which yields a pseudorandom measure. which is concentrated on Gaussian “almost primes”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Frankl and V. Rödl,Extremal problems on set systems, Random Struct. Algorithms20 (2002), 131–164.

    Article  MATH  Google Scholar 

  2. H. Furstenberg and Y. Katznelson,An ergodic Szemerédi theorem for commuting transformations. J. Analyse Math.34 (1978), 275–291.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Furstenberg and Y. Katznelson,A density version of the Hales-Jewett theorem, J. Analyse Math.57 (1991), 64–119.

    MATH  MathSciNet  Google Scholar 

  4. D. Goldston and C. Y. Yildirim,Higher correlations of divisor sums related to primes, I: Triple correlations, Integers3 (2003) A5, 66pp.

    MathSciNet  Google Scholar 

  5. D. Goldston and C. Y. Yildirim,Higher correlations of divisor sums related to primes, III: k-correlations, preprint (available at AIM preprints).

  6. D. Goldston and C. Y. Yildirim,Small gaps between primes, I, preprint.

  7. T. Gowers,A new proof of Szemeredi's theorem, GAFA11 (2001), 465–588.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Gowers,Hypergraph regularity and the multidimensional Szemerédi theorem, preprint.

  9. B. Green and T. Tao,The primes contain arbitrarily long arithmetic progressions, preprint.

  10. G. H. Hardy and E. M. Wright,An Introduction to the Theory of Numbers, 5th Ed., Oxford, Clarendon Press, 1979.

    MATH  Google Scholar 

  11. Y. Kohayakawa, V. Rödl and J. Skokan,Hypergraphs, quasi-randomness, and conditions for regularity, J. Combin. Theory Ser. A97 (2002), no. 2, 307–352.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Nagle, V. Rödl and J. Skokan,The counting lemma for regular k-uniform hypergraphs, Random Structures and Algorithms, to appear.

  13. J. Renze, S. Wagon and B. Wick,The Gaussian Zoo, Experimental Math.10 (2001) 161–173.

    MATH  MathSciNet  Google Scholar 

  14. V. Rödl and J. Skokan,Regularity lemma for k-uniform hypergraphs, Random Structures and Algorithms,25 (2004), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  15. V. Rödl and J. Skokan,Applications of the regularity lemma for uniform hypergraphs, preprint.

  16. I. Ruzsa and E. Szemerédi,Triple systems with no six points carrying three triangles, Colloq. Math. Soc. J. Bolyai18 (1978), 939–945.

    Google Scholar 

  17. J. Solymosi,Note on a generalization of Roth's theorem, Discrete and computational geometry, Algorithms Combin.25, Springer Verlag, 2003, pp. 825–827.

    MathSciNet  Google Scholar 

  18. J. Solymosi,A note on a question of Erdös and Graham, Combinatorics, Probability and Computing13 (2004), 263–267.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Szemerédi,On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar.20 (1969), 89–104.

    Article  MATH  MathSciNet  Google Scholar 

  20. E. Szemerédi,On sets of integers containing no k elements in arithmetic progression, Acta Arith.27 (1975), 299–345.

    Google Scholar 

  21. T. Tao,A quantitative ergodic theory proof of Szemerédi's theorem, preprint.

  22. T. Tao,A variant of the hypergraph removal lemma, preprint.

  23. T. Tao,Arithmetic progressions in the primes, El Escorial conference proceedings.

  24. T. Tao,A remark on Goldston-Yildirim correlation estimates, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, T. The Gaussian primes contain arbitrarily shaped constellations. J. Anal. Math. 99, 109–176 (2006). https://doi.org/10.1007/BF02789444

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789444

Keywords

Navigation