Skip to main content
Log in

Mutation detection by stacking hybridization on genosensor arrays

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A new strategy for analysis of point mutations using oligonucleotide array (genosensor) hybridization was investigated. In the new approach, a single-stranded target strand is preannealed with a labeled “stacking oligonucleotide.” and then the partially duplex labeled target molecule is hybridized to an array of glass-tethered oligonucleotide probes, targeted to the region on the target immediately adjacent to the stacking oligomer. In this configuration, the base-stacking interactions between the “capture probe” and the contiguously stacking oligomer stabilize the binding of the target molecule to its complementary probe on the genosensor array. The temperature of hybridization can be adjusted so that the target molecule will bind to the glass-tethered probe only in the presence of the stacking oligomer, and a single mismatch at or near the terminal position ol the capture probe disrupts the stacking interactions and thereby eliminates or greatly reduces the hybridization. This stacking hybridization approach was investigated using a collection of synthetic targets, probes, and stacking oligonucleotides, which permitted identification of conditions for optimal base mismatch discrimination. The oligonucleotide probes were tethered to the glass using a simple, improved attachment chemistry in which a 3’t-aminopropanol function introduced into the probe during chemical synthesis binds covalently to silanol groups on clean, underivalized glass. “Operating parameters” examined in the stacking hybridization system included length of capture probe, position, type and number of mismatches between the probe and the target, temperature of hybridization and length of washing, and the presence of terminal phosphate group in the probe, at its junction with the stacking oligomer. The results suggest that in the stacking hybridization configuration:

  1. 1

    Optimal mismatch discrimination with 9-mer probes occurs at 45‡C, after which little or no improvement in mispair rejection occurred on lengthy continued washing at 45‡C.

  2. 2.

    At 25‡C optimal mismatch discrimination occurred with 7- or 8-mer probes, or with 9-mer probes containing an additional internal mismatch.

  3. 3.

    The presence of a phosphate group on the 5′-end of the glass-tethered probe had no general effect on mismatch discrimination, but influenced the relative stability of different mismatches in the sequence context studied.

These results provide a motivation for continued development of the slacking hybridization technique for nucleic acid sequence analysis. This approach offers several advantages over the traditional allele-specific oligonucleotide hybridization technique, and is distinct from the contiguous stacking hybridization sitrategy that the Mirzabekov laboratory has introduced (Yershov et al. (1996)Proc. Natl. Avail. Sci. USA 93, 4913–4918; Parinov et al. (1996)Nucleic Acids Res. 24, 2998–3004).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riordan, J. R., Rommens, J. M., Kerem, B., Alou, N., Rozmahel, R., Grzelczak, Z., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA.Science 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  2. Tsui, Lap-Chee (1992) The spectrum of cystic fibrosis mutatiions.Trends Genet 8, 392–399.

    PubMed  CAS  Google Scholar 

  3. Heller, M. J. (1994) Fluorescent de!tection methods for PCR analysis, inThe Polymerase Chain Reaction (Mullis, K. B., Ferré, F., and R. A. Gibbs, R. A., eds., BirkhÄusen, Boston, pp. 134–141.

    Google Scholar 

  4. Jou, C., Rhoads, J., Bouma, S., Ching, S., Hoijer, J., Schroeder-Poliak, P., et al. (1995) Deletion detection in the dystrophin gene by multiplex gap ligase chain reaction and immunochromatographic strip technology.Hum. Mutat. 5, 86–93.

    Article  PubMed  CAS  Google Scholar 

  5. Eggerdin, F. (1995) Fluoescence based oligonucleotide ligation assay for analysis of Cystic Fibrosis transmembrane conduc,tance regulator gene mutations.Human Mutat. 5, 153–165.

    Article  Google Scholar 

  6. Conner, B. J., Reyes, A. A., Morin, C., Itakura, K., Teplitz, R. L. and Wallace, R. B. (1983) Detection of Sickle cell b-S globin allele by hybridization with synthetic oligonucleotides.Proc. Natl. Acact. Sci. USA 80, 278–282.

    Article  CAS  Google Scholar 

  7. Southern, E. M. (1988) Analyzing polynucleotide sequences. International patent application PCT GB 89/00460.

  8. Beattie, K. L., Eggers, M. D., Shumaker, J. M., Hogan, M. E., Varma, R. S., Lamture, J. B., et al. (1992) Genosensor technology.Clin. Chem. 39, 719–722.

    Google Scholar 

  9. Southern, E. M., Maskos, U., and Elder, J. K. (1992) Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models.Genomics 13, 1008–1017.

    Article  PubMed  CAS  Google Scholar 

  10. Maskos, U. and Southern, E. M. (1992) Parallel analysis of oligodeoxyribonucleotide (oligonucleotide) interactions. I. Analysis of factors influencing oligonucleotide duplex formation.Nucleic Acids Res. 20, 1675–1678.

    Article  PubMed  CAS  Google Scholar 

  11. Mirzabekov, A. D. (1994) DNA sequencing by hybridization—a megasequencing method and a diagnostic tool?Trends Biotechnol. 12, 27–32.

    Article  PubMed  CAS  Google Scholar 

  12. Case-Green, S. C., Elder, J. K., Mir, K. U., Maskos, U., Southern, E. M., and Williams, J. C. (1994) Parallel synthesis and analysis: Applications of spatially addressable oligonucleotide arrays, inInnovation and Perspectives in Solid Phase Synthesis, Proceedings of the 3rd International Symposium on Solid Phase Synthesis (Epson, R., ed.), Mayfiower Worldwide Ltd., Birmingham, UK, pp. 77–82.

    Google Scholar 

  13. Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P., and Fodor, S. P. A. (1994) Lightgenerated oligonucleotide arrays for rapid DNA sequence analysis.Proc. Natl. Acad. Sci. USA 91, 5022–5026.

    Article  PubMed  CAS  Google Scholar 

  14. Nikiforov, T. T., Rendle, R. B., Goelet, P., Rogers, Y.-H., Kotewicz, M. L., Anderson, S., et al. (1994) Genetic bit analysis: a solid phase method for typing single nucleotide polymorphisms.Nucleic Acids Res. 22, 4167–4175.

    Article  PubMed  CAS  Google Scholar 

  15. Beattie, W. G., Meng, L., Turner, S., Varma, R. S., Dao, D. D. and Beattie, K. L. (1995) Hybridization of DNA targets to glass-tethered oligonucleotide probes.Mol. Biotechnol. 4, 213–225.

    PubMed  CAS  Google Scholar 

  16. Beattie, K., Beattie, W., Meng, L., Turner, S., Bishop, C., Dao, D., et al. (1995) Advances in genosensor research.Clin. Chem. 41, 700–706.

    PubMed  CAS  Google Scholar 

  17. Parinov, S., Barsky, V., Yershov, G., Kirillov, E., Tirnofeev, E., Belgovskiy, A., et al. (1996) DNA sequencing by hybridization to microchip octaand decanucleotides extended by staclked pentanucleotides.Nucleic Acids Res. 24, 2998–3004.

    Article  PubMed  CAS  Google Scholar 

  18. Yershov, G., Barsky, V., Belgovskiy, A., Kirillov, E., Kreindlin, E., Ivanov, L., et al. (1996) DNA analysis and diagnostics on oligonucleotide microchips.Proc. Natl. Acad. Sci. USA 93, 4913–4918.

    Article  PubMed  CAS  Google Scholar 

  19. Hacia, J. G., Brody, L. C., Chee, M. S., Fodor, S. P. A., and Collins, F. S. (1996) Detection of heterozygous mutations inBRCA 1 using high density oligonucleotide arrays and two-color fluorescence analysis.Nature Genet. 14, 441–447.

    Article  PubMed  CAS  Google Scholar 

  20. Southern, E. M. (1996) DNA chips: analysing sequence by hybridization to oligonucleotides on a large scale.Trends Genet. 12, 110–115.

    Article  PubMed  CAS  Google Scholar 

  21. Khrapko, K. R., Lysov, Y. P., Khorlin, A. A., Ivanov, I. B., Yershov, G. M., Vasiienko, S. K., et al. (1991) A method for DNA sequencing by hybridization with oligonucleotide matrix.DNA Sequence 1, 375–388.

    Article  PubMed  CAS  Google Scholar 

  22. Matteucci, M. D. and Caruthers, M. H. (1981) Synthesis of deoxyoligonucleotides on a polymer support.J. Am. Chem. Soc. 103, 3185–3191.

    Article  CAS  Google Scholar 

  23. Beattie, K. L. and Frost, J. D. III. (1992) Porous wafer for segmented synthesis of biopolymers. US Patent # 5,175,209.

  24. Beattie, K. L., Logsdon, N. J., Anderson, R. S., Espinosa-Lara, J. M., MaldonadoRodriguez, R. et al. (1988) Gene synthesis technology: Recent developments and future prospects.Appl. Biochem. Biotechnol. 10, 510–521.

    CAS  Google Scholar 

  25. Beattie, K. L. and Hurst, G. D. (1994) Synthesis and use of oligonucleotide libraries, inInnovation and Perspectives in Solid Phase Synthesis, Proceedings of the 3rd International Symposium on Solid Phase Synthesis (Epson, R., ed.), Mayflower Worldwide Ltd., Birmingham, UK, pp. 69–76.

    Google Scholar 

  26. Doktycz, M. J. and Beattie, K. L. (1997) Construction and use of genosensor chips, inAutomated Technologies for Genome Characterization (Beugelsdiik, A., ed.), J. Wiley, New York, pp. 205–225.

    Google Scholar 

  27. Beattie, K. L., Zhang, B., Tovar-Rojo, F., and Beattie, W. G. (1996) Genosensorbased oligonucleotide fingerprinting, inPharmaclogenetics: Bridging the Gap Between Basic Science and Clinical Application (Schlegel, J., ed.), IBC Biomedical Library, Southborough, MA, pp. 5.1.5–5.1.25.

    Google Scholar 

  28. Beattie, K. L. (1997) Genomic fingerprinting using oligonucleotide arrays, inDNA Markers: Protocols, Applications and Overviews (Caetano-Anolles, G. and Gresshoff, P., eds.), John Wiley, New York, pp. 213–224.

    Google Scholar 

  29. Kieleczawa, J., Dunn, J. J., and Studier, F. W. (1992) DNA sequencing by primer walking with strings of contiguous hexamers.Science 258, 1787–1791.

    Article  PubMed  CAS  Google Scholar 

  30. Lodhi, M. A. and McCombie, W. R. (1996) Highquality automated DNA sequencing primed with hexamer strings.Genome Res. 6, 10–18.

    Article  PubMed  CAS  Google Scholar 

  31. Johnson, A. F., Lodhi, M. A., and McCombie, W. R. (1996) Fluorescence-based sequencing of doublestranded DNA by hexamer string priming.Anal. Biochem. 241, 228–237.

    Article  PubMed  CAS  Google Scholar 

  32. Kaczorowski, T. and Szybalski, W. (1994) Assembly of 18-nucleotide primers by ligation of three hexamers: sequencing of large genomes by primer walking.Anal. Biochem. 221, 127–135.

    Article  PubMed  CAS  Google Scholar 

  33. Kaczorowski, T. and Szybalski, W. (1996) Co-operativity of hexamer ligation.Gene 179, 189–193.

    Article  PubMed  CAS  Google Scholar 

  34. Kotler, L. E., Zevin-Sonkin, D., Bobolev, I. A., Beskin, A. D., and Ulanovsky, L. E. (1993) DNA sequencing: modular primers assembled from a library of hexamers or pentamers.Proc. Natl. Acad. Sci. USA 90, 4241–4245.

    Article  PubMed  CAS  Google Scholar 

  35. Lane, M. J., Paner, T., Kashin, 1., Faldasz, B. D., Li, B., Gallo, F. J., et al. (1997) The thermodynamic advantage of DNA oligonucleotide ‘stacking hybridization’ reactions: energetics of a DNA nick.Nucleic Acids Res. 25, 611–616.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldonado-Rodriguez, R., Espinosa-Lara, M., Loyola-Abitia, P. et al. Mutation detection by stacking hybridization on genosensor arrays. Mol Biotechnol 11, 13–25 (1999). https://doi.org/10.1007/BF02789173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789173

Index Entries

Navigation