Skip to main content
Log in

B cell maturation and selection at the marrow-periphery interface

  • Foreword
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

More than 95% of newly formed B cells die in the short interval spanning slgM acquisition in the bone marrow and entry into the long-lived pool, suggesting that selective events dictating B cell longevity occur at this stage. These likely include both ligandinduced deletion as well as discrete events that mediate recruitment to the long-lived recirculating pool. We are probing these events through the examination of normal B cell differentiation during this critical period: the characterization of a natural mutation that blocks late maturation, an irradiation/autoreconstitution model of marrow-derived B cell differentiation, and the identification of life span regulatory genes whose expression changes within this window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Osmond DG: B cell development in the bone marrow. Semin Immunol 1990;2:173–180.

    PubMed  CAS  Google Scholar 

  2. Raff MC, Megson M, Owen JJT, Cooper MD: Early production of intracellular IgM by B lymphocyte precursors in mouse. Nature 1976;259: 274–276.

    Article  Google Scholar 

  3. Osmond DG, Park YH: B lymphocyte progenitors in mouse bone marrow. Int Rev Immunol 1987;2:241–260.

    Article  PubMed  CAS  Google Scholar 

  4. Opstelten D, Osmond DG: Pre-B cells in mouse bone marrow: immunofluorescence stathmokinetic studies of the proliferation of cytoplasmic mu-chain-bearing cells in normal mice. J Immunol 1983; 131:2635–2641.

    PubMed  CAS  Google Scholar 

  5. Coffman R: Surface antigen expression and immunoglobulin gene rearrangement during mouse pre-B-cell development. Immunol Rev 1982;69:5–23.

    Article  PubMed  CAS  Google Scholar 

  6. Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K: Resolution and characterization of pro-B and pre-pro-B-cell stages in normal mouse bone marrow. J Exp Med 1991;173:1213–1225.

    Article  PubMed  CAS  Google Scholar 

  7. Osmond DG: Population dynamics of bone marrow B lymphocytes. Immunol Rev 1986;93:103–124.

    Article  PubMed  CAS  Google Scholar 

  8. Sprent J, Basten A: Circulating T and B lymphocytes of the mouse. II. Lifespan. Cell Immunol 1973;7:40–59.

    Article  PubMed  CAS  Google Scholar 

  9. Sprent J: Migration and lifespan of lymphocytes; in Loor F, Roelants GE (eds.): B and T cells in Immune Recognition. Wiley, London, 1997, pp. 59–82.

    Google Scholar 

  10. Osmond DG:Theturnoverof B-cell populations. Immunol Today 1993; 14:34–37.

    Article  PubMed  CAS  Google Scholar 

  11. Forster I, Vieira P, Rajewsky K: Flow cytometric analysis of cell proliferation dynamics in the B-cell compartment of the mouse. Intern Immunol 1989;1:321–331.

    Article  CAS  Google Scholar 

  12. Forster I, Rajewsky K: The bulk of the peripheral B-cell pool is stable and not renewed from the bone marrow. Proc Natl Acad Sci USA 1990;87:4781–4784.

    Article  PubMed  CAS  Google Scholar 

  13. Rajewsky K: B-cell lifespans in the mouse-why to debate what? Immunol Today 1993; 14:40, 41.

    Google Scholar 

  14. Allman DM, Ferguson SE, Cancro MP: Peripheral B-cell Maturation I: Immature peripheral B-cells in adults are heat-stable antigenhi and exhibit unique signaling characteristics. J Immunol 1992;149: 2533–2540.

    PubMed  CAS  Google Scholar 

  15. Allman DM, Ferguson SE, Lentz VM, Cancro MP: Peripheral B-cell maturation II heat-stable antigenhi splenic B-cells are an immature developmental intermediate in the production of longlived marrow-derived B-cells. J Immunol 1993;151:4431–4444.

    PubMed  CAS  Google Scholar 

  16. Nossal GJ, Pike BL: Evidence for the clonal abortion theory of B-lymphocyte tolerance. J Exp Med 1975;141:904–917.

    PubMed  CAS  Google Scholar 

  17. Metcalf ES, Klinman NR: In vitro tolerance induction of neonatal murine B-cells. J Exp Med 1976; 143:1327–1340.

    Article  PubMed  CAS  Google Scholar 

  18. Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA, et al.: Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 1988;334: 676–682.

    Article  PubMed  CAS  Google Scholar 

  19. Hartley SB, Crosbie J, Brink S, Kantor AB, Basten A, Goodnow CC: Elimination from peripheral lymphoid tissues of self reactive B lymphocytes recognizing membrane-bound antigens. Nature 1991;353:765–769.

    Article  PubMed  CAS  Google Scholar 

  20. Nemazee D, Burki K: Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 1989;337:562–566.

    Article  PubMed  CAS  Google Scholar 

  21. Hartley SB, Cooke MP, Fulcher DA, Harris AW, Cory S, Basten A, et al.: Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell 1993:72:325–335.

    Article  PubMed  CAS  Google Scholar 

  22. Fulcher D A A B Lyons S L Korn M C Cook C Koleda C Parish B Fazeksa de St Groth A Basten 1991 The fate of self-reactive B-cells depends primarily on the degree of antigen receptor engagement and availability of T cell help J Exp Med 183: 2313–2328.

  23. Gu H, Tarlinton D, Muller W, Rajewski K, Forster I: Most peripheral B-cells in mice are ligand selected. J Exp Med 1991; 173:1357–1371.

    Article  PubMed  CAS  Google Scholar 

  24. Minnerath JM, Mueller CM, Buron S, Jemmerson R: B lymphocyte recognition of cytochrome c: higher frequency of cells specific for self versus foreigh antigen early in the immune response and V gene usage in the response to self antigen. Eur J Immunol 1995;25:784–791.

    Article  PubMed  CAS  Google Scholar 

  25. Cyster JG, Hartley SB, Goodnow CC: Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 1994;371:389–395.

    Article  PubMed  CAS  Google Scholar 

  26. Cyster JG, Healy JI, Kishihara K, Mak TW, Thomas ML, Goodnow CC: Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 1996;381:325–328.

    Article  PubMed  CAS  Google Scholar 

  27. Engel P, Zhou L-J, Ord DC, Sato S, Koller B, Tedder T: Abnormal B lymphocyte development activation and differentiation in mice that lack or overexpress the CD 19 signal transduction molecule. Immunity 1995;3:39–50.

    Article  PubMed  CAS  Google Scholar 

  28. Kim U,Qin X-F, Gong S, Stevens S, Luo Y, Mussenzweig M, et al.: The B-cell-specific transcription coactivator OCA-B/OBF-1/Bob-1 is essential for normal production of immunoglobulin isotypes. Nature 1996:383:542–547.

    Article  PubMed  CAS  Google Scholar 

  29. Hibbs ML, Tarlington DM, Armes J, Grail D, Hodgson G, Maglitto R, et al.: Multiple devects in the immune system of Lyn-deficient mice culminating in autoimmune disease. Cell 1995;83:301–311.

    Article  PubMed  CAS  Google Scholar 

  30. Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, et al.: The immune responsis in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1994; 1:167–178.

    Article  PubMed  CAS  Google Scholar 

  31. Norvell A, Mandik L, Monroe JG: Engagement of the antigen-receptor on immature murine B lymphocytes results in death by apoptosis. J Immunol 1995;154:4404–4413.

    PubMed  CAS  Google Scholar 

  32. Miller DJ, Hayes CE: Phenotypeic and genetic characterization of a unique B lymphocyte deficiency in strain A/WySnJ mice. Eur J Immunol 1991;21:1123–1130.

    Article  PubMed  CAS  Google Scholar 

  33. Miller DJ, Hanson KD, Carman JA, Hayes CE: A single autosomal gene defect severely limits IgG but not IgM responses in B lymphocyte-deficient A/WySnJ mice. Eur J Immunol 1992;22:373–379.

    Article  PubMed  CAS  Google Scholar 

  34. Lentz VM, Cancro MP, Nashold FE, Hayes CE: Bcmd governs recruitment of new B-cells into the stable peripheral B-cell pool in the A/WySnJ mouse. J Immunol 1996;157:598–606.

    PubMed  CAS  Google Scholar 

  35. Hayakawa K, Hardy RR, Honda M, Herzenberg LA, Steinberg AD Herzenberg LA: Ly-1 B-cells: functionally distinct lymphocytes that secrete IgM autoantibodies. Proc Natl Acad Sci USA 1984; 81:2494–2498.

    Article  PubMed  CAS  Google Scholar 

  36. Hardy RR, Hayakawa K: Developmental origins specificities and immunolgobulin gene biases of murine Ly-1 B-cells. Int Rev in Immunol 1992;8:189–207.

    Article  CAS  Google Scholar 

  37. Hardy RR, Hayakawa K:CD5 B-cells a fetal B-cell lineage. Adv Immunol 1994;55:297–339.

    Article  PubMed  CAS  Google Scholar 

  38. Haughton G, Arnold LW, Whitmore AC, Clarke SH: B-l cells are made not born. Immunol Today 1993; 14:84–91.

    Article  PubMed  CAS  Google Scholar 

  39. Mercolino TJ, Locke AL, Afshari A, Sasser D, Travis WW, Arnold LW, et al.: Restricted immunoglobulin variable region gene usage by normal Ly-1 (CD5) B-cells that recognize phosphatidyl choline. J Exp Med 1989;169: 1869–1877.

    Article  PubMed  CAS  Google Scholar 

  40. Ying-zi C, Rabin ER, Wortis HH: Treatment of murine CD5 B-cells with anti-Ig but not LPS induces surface CD5: two B-cell activation pathways. Int Immunol 1991; 3:467–476.

    Article  Google Scholar 

  41. Karras JG, Wang Z, Huo L, Howard RG, Frank DA, Rothstein TL: Signal transducer and activator of transcription-3 (STAT3) is constitutively activated in normal self-renewing B-l but only inducibly expressed in conventional B lymphocytes. J Exp Med 1997; 185:1035–1042.

    Article  PubMed  CAS  Google Scholar 

  42. Tomayko M, Cancro MP: Longlived B cells are distinguished by elevated expression of A1. J Immunol 1998; in press.

  43. Lin E, Orlofsky YA, Berger MS, Prystowsky MD: Characterization of A1 a novel hemopoietic-specific early-response gene with sequence similarity tobcl-2. J Immunol 1993;151:1979–1988.

    PubMed  CAS  Google Scholar 

  44. Lin E, Orlofsky YA, Wang HG, Reed JC, Prystowsky MB: Al aBcl-2 family member prolongs cell survival and permits myeloid differentiation. Blood 1996;87:983–992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Cancro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cancro, M.P., Allman, D.M., Hayes, C.E. et al. B cell maturation and selection at the marrow-periphery interface. Immunol Res 17, 3–11 (1998). https://doi.org/10.1007/BF02786425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786425

Key words

Navigation