Skip to main content
Log in

Physicochemical characterization ofEscherichia coli

A comparison with gram-positive bacteria

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

EightEscherichia coli strains were characterized by determining their adhesion to xylene, surface free energy, zeta potential, relative surface charge, and their chemical composition. The latter was done by applying X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR). No relationship between the adhesion to xylene and the water contact angles of these strains was found. Three strains had significantly lower surface free energies than the other strains. Surface free energies were either obtained from polar and dispersion parts or from Lifshitz-van der Waals and acid/base parts of the surface free energy. A correlation (r=0.97) between the polar parts and the electron-donor contributions to the acid/base part of the surface free energy was found. The zeta potentials of all strains, measured as a function of pH (2–11), were negative. Depending on the zeta potential as a function of pH, three groups were recognized among the strains tested. A relationship (r=0.84) was found between the acid/base component of the surface free energy and the zeta potential measured at pH=7.4. There was no correlation between results of XPS and IR studies. Data from the literature of XPS and IR studies of the gram-positive staphylococci and streptococci were compared with data from the gram-negativeE. coli used in this study. It appeared that in these three groups of bacteria, the polysaccharide content detected by IR corresponded well with the oxygen-to-carbon ratio detected by XPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stamm, W. E. (1978) Infections related to medical devices.Ann. Int. Med.,89, 764–778.

    PubMed  CAS  Google Scholar 

  2. Dankert, J., Hogt, A. H., and Feijen, J. (1986) Biomedical polymers: bacterial adhesion, colonization and infection.CRC Crit. Rev. Biocompatibility 2(3), 219–301.

    CAS  Google Scholar 

  3. Slade, N., and Gillespie, W. A. (1985)The Urinary Tract and the Catheter, John Wiley, Chichester, UK, p. 10–12.

    Google Scholar 

  4. Kunin, C. M. (1987).Detection, Prevention and Management of Urinary Tract Infections, 4th ed., Lea & Febiger, Philadelphia, pp. 260–262.

    Google Scholar 

  5. Jewes, L. A., Gillespie, W. A., Leadbetter, A., Myers, B., Simpson, R. A., Stower, M. J., and Viant, A. C. (1988) Bacteriuria and bacteriaemia in patients with long-term indwelling catheters—a domicilary study.J. Med. Microbiol.,26, 61.

    Article  PubMed  CAS  Google Scholar 

  6. Van der Mei, H. C., Léonard, A. J., Weerkamp, A. H., Rouxhet, P. G., and Busscher, H. J. (1988) Surface properties ofStreptococcus salivarius HB and nonfibrillar mutants: measurement of zeta potential and elemental composition with x-ray photoelectron spectroscopy.J. Bacteriol. 170(6), 2462–2466.

    PubMed  Google Scholar 

  7. Van der Mei, H. C., Brokke, P., Dankert, J., Feijen, J., Rouxhet, P. G., and Busscher, H. J. (1989) Physicochemical surface properties of nonencapsulated and encapsulated coagulase-negative staphylococci, applied and environmental microbiology.Appl. Envir. Microbiol. 55(11), 2806–2814.

    Google Scholar 

  8. Dankert, J. (1973) Biotyping of enterobacteriaceae: a method to determine the efficacy of the barrier function of isolation units, inGermfree Research, Academic, New York, pp. 59–67.

    Google Scholar 

  9. Heneghan, J. B., Ørskov, I., Ørskov, F., Jann, B., and Jann, K. (1977) Chemistry and genetics ofEscherichia coli.Bact. Rev. 41, 667.

    Google Scholar 

  10. Pedersen, K. (1981) Electrostatic interaction chromatography, a method for assaying the relative surface charges of bacteria.FEMS Microbiol. Letters 12, 365–367.

    Article  CAS  Google Scholar 

  11. Hogt, A. H., Dankert, J., and Feijen, J. (1986) Adhesion of coagulase-negative staphylococci to methacrylate polymers and copolymers.J. Biomed. Mat. Res.,20, 533–545.

    Article  CAS  Google Scholar 

  12. Rosenberg, M. (1984) Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity.FEMS Microbiol. Letters 22, 289–295.

    Article  CAS  Google Scholar 

  13. Busscher, H. J., Weerkamp, A. H., van der Mei, H. C., van Pelt, A. W. J., de Jong, H. P., and Arends, J. (1984) Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion.Appl. Envir. Microbiol. 48(5), 980–983.

    CAS  Google Scholar 

  14. Pratt-Terpstra, I. H., Weerkamp, A. H., and Busscher, H. J. (1988) On a relation between interfacial free energy dependent and non-interfacial free energy dependent adherence of oral streptococci to solid substrata.Curr. Microbiol.,16, 311–313.

    Article  CAS  Google Scholar 

  15. Bellon-Fontaine, M.-N., Mozes, N., Van der Mei, H. C., Sjollema, J., Cerf, O., Rouxhet, P. G., and Busscher, H. J. (1990) A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata.Cell Biophys. 17, 93–106.

    PubMed  CAS  Google Scholar 

  16. Busscher, H. J., Kip, G. A. M., Van Silfhout, A., and Arends, J. (1986) Spreading pressures of water and n-propanol on polymer surfaces.J. Coll. Interf. Sci. 114, 307–313.

    Article  CAS  Google Scholar 

  17. Van Oss, C. J., Chaudhury, M. K., and Good, R. J. (1987) Monopolar surfaces.Adv. Colloid Interface Sci. 28, 35.

    Article  PubMed  Google Scholar 

  18. Van Oss, C. J., Chaudhury, M. K., and Good, R. J. (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems.Chem. Rev. 88, 927–941.

    Article  Google Scholar 

  19. Amory, D. E., Genet, M. J., and Rouxhet, P. G. (1988) Application of XPS to the surface analysis of yeast cells.Surf. Interface Anal. 11, 478–486.

    Article  CAS  Google Scholar 

  20. Wagner, C. D., Davis, L. E., Zeller, M. V., Taylor, J. A., Raymond, R. H., and Gale, L. H. (1981) Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis.Surf. Interface Anal.,3, 211–225.

    Article  CAS  Google Scholar 

  21. Van der Mei, H. C., Noordmans, J., and Busscher, H. J. (1989) Molecular surface characterization of oral streptococci by Fourier transform infrared spectroscopy.Biochim. Biophys. Acta 991, 395–398.

    PubMed  Google Scholar 

  22. Nichols, P. D., Henson, J. M., Guckert, J. B., Nivens, D. E., and White, D. C. (1985) Fourier transform-infrared spectroscopic method for microbiol ecology: analysis of bacteria-polymer mixtures and biofilms.J. Microbiol. Meth. 4, 79–94.

    Article  CAS  Google Scholar 

  23. James, A. M. (1979) Electrophoresis of particles in suspension, inSurface and Colloid Science vol. 11,Experimental Methods. (Good, R. J. and Stromberg, R. R., eds.), Plenum, New York, pp. 174–177.

    Google Scholar 

  24. Amory, D. E., Dufour, J. P., and Rouxhet, P. G. (1988) Flocculence of brewery yeasts and their surface properties: chemical composition, electrostatic charge and hydrophobicity.J. Inst. Brew. 94(2), 79–84.

    CAS  Google Scholar 

  25. Mozes, N., Léonard, A. J., and Rouxhet, P. G. (1988) On the relations between the elemental surface composition of yeasts and bacteria and their charge and hydrophobicity.Biochim. Biophys. Acta 945, 324–334.

    Article  PubMed  CAS  Google Scholar 

  26. James, R. O., Davis, J. A., and Leckie, J. O. (1978) Computer simulation of the conductometric and potentiometric titrations of the surface groups on ionizable latexes.J. Coll. Int. Sci. 65(2), 331–344.

    Article  CAS  Google Scholar 

  27. Lyklema, J. (1985)Surface and Interface Aspects of Biomedical Polymers, vol. 1 (Andrade, J. D., ed.), Plenum, New York, pp. 293–336.

    Google Scholar 

  28. Van der Mei, H. C., Leonard, A. J., Weerkamp, A. H., Rouxhet, P. G., and Busscher, H. J. (1988) Properties of oral streptococci relevant for adherence: zeta potential, surface free energy and elemental composition.Colloids and Surfaces 32, 297–305.

    Article  Google Scholar 

  29. Dillon, J. K., Fuerst, J. A., Hayward, A. C., and Davis, G. H. G. (1986) A comparison of five methods for assaying bacterial hydrophobicity.J. Microbiol. Methods 6, 13–19.

    Article  CAS  Google Scholar 

  30. Mozes, N., and Rouxhet, P. G. (1987) Methods for measuring hydrophobicity of microorganisms.J. Microbiol. Methods 6, 99–112.

    Article  Google Scholar 

  31. Van der Mei, H. C., Weerkamp, A. H., and Busscher, H. J. (1987) A comparison of various methods to determine hydrophobic properties of streptococcal cell surfaces.J. Microbiol. Methods 6, 277–287.

    Article  Google Scholar 

  32. Wicken, A. J. (1985) Bacterial cell walls and surfaces, inBacterial Adhesion (Savage, D. C. and Fletcher, M., eds.), Plenum Press, New York, pp. 45–70.

    Google Scholar 

  33. O’Leary W. M. (1989) Practical handbook of microbiology.Practical Handbook of Microbiology, CRC Press, Boca Raton, FL, pp. 360–373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harkes, G., van der Mei, H.C., Rouxhet, P.G. et al. Physicochemical characterization ofEscherichia coli . Cell Biochem Biophys 20, 17–32 (1992). https://doi.org/10.1007/BF02782652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02782652

Index Entries

Navigation