Skip to main content
Log in

Intraocular pressure effects on optic nerve-head oxidative metabolism measured in vivo

  • Laboratory Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

The effects of acute intraocular pressure (IOP) on the reduction/oxidation ratio of cytochromea,a 3 were measured from intact cat optic nerve by microfiber reflection spectrophotometry. This enabled the real-time analysis of optic nerve-head oxidative metabolism following IOP or mean arterial pressure (MAP) changes. Findings included: (1) cytochromea,a 3 became more reduced and relative blood volume decreased at lower perfusion pressures, even at IOP of <20 mm Hg; (2) metabolic inhibition began at variable perfusion pressures but invariably progressed as perfusion pressure declined; and (3) increased IOP or decreased MAP caused metabolic inhibition. These findings demonstrate that: (1) optic nerve metabolic dysfunction is possible at low IOPs; (2) lowering IOP can reverse metabolic dysfunction; (3) the metabolic response is dependent on IOP and/or MAP changes; and (4) the metabolic inhibition is related to optic nerve ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29

    Article  PubMed  CAS  Google Scholar 

  2. Anderson DR, Hendrickson A (1974) Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol 13:771–783

    PubMed  CAS  Google Scholar 

  3. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17:65–134

    CAS  Google Scholar 

  4. Duckrow RB, LaManna JS, Rosenthal M (1981) Disparate recovery of resting and stimulated oxidative metabolism following transient ischemia. Stroke 12:677–686

    PubMed  CAS  Google Scholar 

  5. Ernest JT (1973) In vivo measurement of optic-disk oxygen tension. Invest Ophthalmol Vis Sci 12:927–931

    CAS  Google Scholar 

  6. Ernest JT (1974) Autoregulation of optic-disk oxygen tension. Invest Ophthalmol Vis Sci 13:101–106

    CAS  Google Scholar 

  7. Ernest JT (1976) Optic disc blood flow. Trans Ophthalmol Soc UK 96:348

    PubMed  CAS  Google Scholar 

  8. Ernest JT, Potts AM (1968) Pathophysiology of the distal portion of the optic nerve: I. Tissue pressure relationships. Am J Ophthalmol 66:373–380

    PubMed  CAS  Google Scholar 

  9. Gaasterland D, Tanishima T, Kuwabara T (1978) Axoplasmic flow during chronic experimental glaucoma: I. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci 17:838–846

    PubMed  CAS  Google Scholar 

  10. Geijer C, Bill A (1979) Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci 18:1030–1042

    PubMed  CAS  Google Scholar 

  11. Grehn F, Grusser O-J, Strange D (1984) Effect of short-term intraocular pressure increase on cat retinal ganglion cell activity. Behav Brain Res 14:109–121

    Article  PubMed  CAS  Google Scholar 

  12. Hayreh SS, Revie IHS, Edwards J (1970) Vasogenic origin of visual field defects and optic nerve changes in glaucoma. Br J Ophthalmol 54:461–472

    Article  PubMed  CAS  Google Scholar 

  13. Hayreh SS, March W, Anderson DR (1979) Pathogenesis of block of rapid orthograde axonal transport by elevated intraocular pressure. Exp Eye Res 28:515–523

    Article  PubMed  CAS  Google Scholar 

  14. Jöbsis FF, Keizer JH, LaManna JC, Rosenthal M (1977) Reflectance spectrophotometry of cytochromea, a 3 in vivo. J Appl Physiol 43:858–872

    PubMed  Google Scholar 

  15. Kageyama GH, Wong-Riley MTT (1984) The histochemical localization of cytochrome oxidase in the retina and lateral geniculate nucleus of the ferret, cat, and monkey, with particular reference to retinal mosaics and on/off-center visual channels. J Neurosci 4:2445–2459

    PubMed  CAS  Google Scholar 

  16. LaManna JC, Jöbsis FF, Austin GM, Schuler W (1977) Changes in brain metabolism in the cat in response to multiple brief transient ischemic episodes. Exp Neurol 55:304–317

    Article  PubMed  CAS  Google Scholar 

  17. Minkler DS, Tso MOM, Zimmerman LE (1976) A light microscopic, autoradiographic study of axoplasmic transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. Am J Ophthalmol 82:741–757

    Google Scholar 

  18. Minkler DS, Bunt AH, Johanson GW (1977) Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci 16:426–441

    Google Scholar 

  19. Novack RL, Sick TJ, Rosenthal M (1982) Microfiber, dual wavelength reflection spectrophotometry of cytochrome oxidase from small, subsurface areas of brain in situ. Neurosci (abstr) 8:993

    Google Scholar 

  20. Ochs S (1971) Local supply of energy to the fast axoplasmic transport mechanism. Proc Natl Acad Sci USA 68:1279–1282

    Article  PubMed  CAS  Google Scholar 

  21. Pillunat LE, Stodtmeister R, Wilmanns I, Christ Th (1985) New aspects in pressure tolerance of the optic nerve head (abstr) Invest Ophthalmol Vis Sci [ARVO Suppl] 26:223

    Google Scholar 

  22. Pillunat LE, Stodtmeister R, Wilmanns I, Christ Th (1985) Autoregulation of ocular blood flow during changes in intraocular pressure — preliminary results. Greafe’s Arch Clin Exp Ophthalmol 223:219–223

    Article  CAS  Google Scholar 

  23. Quigley HA, Anderson DR (1976) The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol Vis Sci 15:606–615

    CAS  Google Scholar 

  24. Quigley HA, Flower RW, Addicks EM, McLeod DS (1980) The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 19:505–517

    PubMed  CAS  Google Scholar 

  25. Radius RL, Anderson DR (1981) Rapid axonal transport in primate optic nerve: distribution of pressure-induced interruption. Arch Ophthalmol 99:650–654

    PubMed  CAS  Google Scholar 

  26. Rosenthal M, Martel D, LaManna JC, Jöbsis FF (1976) In situ studies of oxidative energy metabolism during transient cortical ischemia in cats. Exp Neurol 50:477–494

    Article  PubMed  CAS  Google Scholar 

  27. Sossi N, Anderson DR (1983) Blockage of axonal transport in optic nerve induced by elevation of intraocular pressure. Arch Ophthalmol 101:94–97

    PubMed  CAS  Google Scholar 

  28. Sossi N, Anderson DR (1983) Effect of elevated intraocular pressure on blood flow: occurrence in cat optic nerve head studies with iodoantipyrine I 125. Arch Ophthalmol 101:98–101

    PubMed  CAS  Google Scholar 

  29. Uenoyama K, McDonald JM, Drance SM (1969) The effect of intraocular pressure on visual electrical responses. Arch Ophthalmol 81:722–729

    PubMed  CAS  Google Scholar 

  30. Weinstein JM, Duckrow RB, Beard D, Brennan RW (1983) Regional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci 24:1559–1565

    PubMed  CAS  Google Scholar 

  31. Yancey CM, Linsenmeier RA (1988) The electroretinogram and choroidal PO2 in the cat during elevated intraocular pressure. Invest Ophthalmol Vis Sci 29:700–707

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novack, R.L., Stefánsson, E. & Hatchell, D.L. Intraocular pressure effects on optic nerve-head oxidative metabolism measured in vivo. Graefe’s Arch Clin Exp Ophthalmol 228, 128–133 (1990). https://doi.org/10.1007/BF02764306

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764306

Keywords

Navigation