Skip to main content
Log in

Water transport in polylactic acid (PLA), PLA/ polycaprolactone copolymers, and PLA/polyethylene glycol blends

  • Contents
  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) is a hydrolytically degradable aliphatic polyester, and water vapor permeability may have a significant influence on the rate of degradation. A method is devised to use bags prepared from PLA films and filled with molecular sieves to determine the water vapor permeability in the polymer, its copolymers with caprolactone, and blends with polyethylene glycol. The “solution-diffusion” model is used to determine the permeability parameters. These include the solubility coefficient,S, a measure of the equilibrium water concentration available for hydrolysis and the diffusion coefficient,D, which characterizes the rate of water vapor diffusion into the film under specific conditions. Values ofS andD at 50‡C and 90% relative humidity ranged from 400 × 10-6 to 1000 × 10-6 cm3 (STP)/(cm3 Pa) and 0.20 × 10-6 to 1.0 × 10-6 cm2/s, respectively. TheS andD coefficients were also measured at 20 and 40‡C and compared to those of other polymers. The degree of crystallinity was found to have little influence on the measured permeability parameters. The heat of sorption, δHS, and the activation energy of diffusion, ED, were used to show that the permeability process is best described by the “water cluster” model for hydrophobic polymers. Finally, the diffusion coefficient is used to compare the rate of water diffusion to the rate of water consumption by ester hydrolysis. Results indicate that hydrolytic degradation of PLA is reaction-controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. C. Albertsson and S. Karlsson (1994)Chem. Technol. Biodegrad. Polym. 23, 7.

    Google Scholar 

  2. K. P. Andriano, T. Pohjonen, and P. Tomali (1994)J. Appl. Biomater. 5, 133.

    Article  CAS  Google Scholar 

  3. R. Bodmeier, K. Oh, and H. Chen (1989)Int. J. Pharm. 51, 1.

    Article  CAS  Google Scholar 

  4. P. Cerrai, L. Tricoli, G. D. Guerra, R. Sbrabati Del Guerra, M. G. Cascone, and P. Guisti (1994)J. Mater. Sci. Mater. Med. 5, 308.

    Article  CAS  Google Scholar 

  5. E. Chiellini and R. Solaro (1993)Chemtech. July, 29.

  6. M. Coffin and McGinity (1993)J. Pharm. Res. 9(2), 200.

    Article  Google Scholar 

  7. L. Fambri, A. Pegiretti, M. Mazzurana, and C. Migliaresi (1994)J. Mater. Sci. Mater. Med. 5, 679.

    Article  CAS  Google Scholar 

  8. R. Kenley, M. O. Lee, T. Mahoney, and L. Sanders (1987).Macromolecules 20, 2398.

    Article  CAS  Google Scholar 

  9. S. Li, H. Garreau, and M. Vert (1990A)J. Mater. Sci. Mater. Med. 1, 123.

    Article  CAS  Google Scholar 

  10. G. Rafler and M. Jobmann (1994)Drugs Made Germany 37(3), 83.

    CAS  Google Scholar 

  11. M. Therin, P. Christel, S. Li, H. Garreau, and M. Vert (1992)Biomaterials 13(9), 594.

    Article  CAS  Google Scholar 

  12. M. Vert, S. Li, and H. Garreau (1994)J. Biomater. Sci. Polym. Edu. 6, 639.

    Article  CAS  Google Scholar 

  13. E. Lipinsky and R. G. Sinclair (1986)Chem. Eng. Prog. Aug., 26.

  14. J. M. Mayer and D. L. Kaplan (1994)TRIP 2(7), 227.

    CAS  Google Scholar 

  15. G. Swift (1990)Agr. Synth. Polym. Mar., 2.

  16. J. A. Tamada and R. Langer (1993)Proc. Natl. Acad. Sci. USA 90, 552.

    Article  CAS  Google Scholar 

  17. C. Yue, V. Dave, R. Gross, and S. P. McCarthy (1995)Polym. Preprints 36(1), 418.

    CAS  Google Scholar 

  18. S. P. Sawan and J. J. Barry (1988)Polym. Preprints 29(1), 299.

    CAS  Google Scholar 

  19. A. Andrady (1994)J.M.S. Rev. Macromol. Chem. Phys. C34(1), 25.

    CAS  Google Scholar 

  20. S. Li, H. Garreau, and M. Vert (1990).J. Mater. Sci. Mater. Med. 1, 198.

    Article  CAS  Google Scholar 

  21. D. Cohn and H. Younes (1988).J. Biomed. Mater. Res. 22, 993.

    Article  CAS  Google Scholar 

  22. X. Feng, C. Song, and W. Chen (1983)J. Polym. Sci. Polym. Lett. Ed. 21, 593.

    Article  CAS  Google Scholar 

  23. C. H. Holten (1971)Lactic Acid, Verlag Chemie, Berlin.

    Google Scholar 

  24. S. Li and M. Vert (1994)Macromolecules 27, 3107.

    Article  CAS  Google Scholar 

  25. N. S. Mason, C. S. Miles, and R. E. Sparks (1981)Polym. Sci. Technol. 14, 279.

    CAS  Google Scholar 

  26. W. P. Hsu, P. Y. Lo, A. S. Myerson, and T. K. Kwei (1992).AIChE J. 38(9), 1481.

    Article  CAS  Google Scholar 

  27. J. Brandup and E. H. Immergut (1988)Polymer Handbook, Wiley Interscience, New York.

    Google Scholar 

  28. K. H. Lam, P. Nieuwenhuis, I. Molenaar, H. Esselbrugge, J. Feijen, P. J. Dijkstra, and J. M. Schakenraad (1994)J. Mater. Sci. 5(4), 181.

    Article  CAS  Google Scholar 

  29. U. Siemann (1985)Thermochim. Acta 85, 513.

    Article  CAS  Google Scholar 

  30. E. A. Schmitt, D. R. Flanagan, and R. J. Lindhardt (1994)Macromolecules 27, 743.

    Article  CAS  Google Scholar 

  31. C. Pitt, Y. Cha, S. Shah, and K. Zhu (1992)J. Control. Release 19, 189.

    Article  CAS  Google Scholar 

  32. D. Cohn, H. Younes, and G. Maron (1987)Polymer 28, 2018.

    Article  CAS  Google Scholar 

  33. G. E. Zaikov, A. L. Iordanskii, and V. S. Markin (1988)New Concepts in Polymer Science. Diffusion of Electrolytes in Polymers, Elsevier Science, Amsterdam.

    Google Scholar 

  34. D. W. Van Krevelen (1990)Properties of Polymers, Elsevier Science, Amsterdam.

    Google Scholar 

  35. W. P. Hsu, R. J. Li, A. S. Myerson, and T. K. Kwei (1993)Polymer 34(3), 597.

    Article  CAS  Google Scholar 

  36. P. M. Jacobs and F. R. Jones (1989)J. Mater. Sci. 24, 2331.

    Article  CAS  Google Scholar 

  37. P. M. Jacobs and F. R. Jones (1989)J. Mater. Sci. 24, 2343.

    Article  CAS  Google Scholar 

  38. P. M. Jacobs and F. R. Jones (1990)J. Mater. Sci. 25, 2471.

    Article  CAS  Google Scholar 

  39. G. L. Siparsky (1995)The Degradation of Poly-(Lactic Acid)and Its Copolymers with Poly-(∃-caprolactone): Hydrolysis and Permeability, Colorado School of Mines, Golden, CO.

  40. CRC Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, OH, 1974–1975.

  41. K. A. Lokhandwala, S. M. Nadakatti, and S. A. Stern (1995)J. Polym. Sci. Part B Polym. Phys. 33, 965.

    Article  CAS  Google Scholar 

  42. X. Zhang, U. Wyss, D. Pichora, and M. Goosen (1994)J. Bioac. Compat. Polym. 9, 80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siparsky, G.L., Voorhees, K.J., Dorgan, J.R. et al. Water transport in polylactic acid (PLA), PLA/ polycaprolactone copolymers, and PLA/polyethylene glycol blends. J Environ Polym Degr 5, 125–136 (1997). https://doi.org/10.1007/BF02763656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02763656

Key words

Navigation