Skip to main content
Log in

Subgroups of free profinite groups and large subfields of\(\mathop Q\limits^ \sim \)

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that many subgroups of free profinite groups are free, and use this to give new examples of pseudo-algebraically closed subfields of\(\mathop Q\limits^ \sim \) satisfying Hilbert’s Irreducibility Theorem, and to solve problems posed by M. Jarden and A. Macintyre. We also find a subfield of\(\mathop Q\limits^ \sim \) which does not satisfy Hilbert’s Irreducibility Theorem, but all of whose proper finite extensions do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Anderson,Exactness properties of profinite completion functors, Topology13 (1974), 229–239.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Ax,The elementary theory of finite fields, Ann. of Math.88 (1968), 239–271.

    Article  MathSciNet  Google Scholar 

  3. E. Binz, J. Neukirch and G. H. Wenzel,A subgroup theorem for free products of profinite groups, J. Algebra19 (1971), 104–109.

    Article  MATH  MathSciNet  Google Scholar 

  4. I. M. Chiswell,Euler characteristics of groups, Math. Z.147 (1976), 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Douady,Cohomologie des groupes compacts totalement discontinus, Séminaire Bourbaki, 1959–1960, exposé 189.

  6. L. van den Dries,Decidable PAC-fields of algebraic numbers, in preparation.

  7. D. Gildenhuys and C. Lim, Free pro-C-groups, Math. Z.125 (1972), 233–254.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. W. Gruenberg,Projective profinite groups, J. London Math. Soc.42 (1967), 155–165.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Jarden,Elementary statements over large algebraic fields, Trans. Amer. Math. Soc.164 (1972), 67–91.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Jarden,Algebraic extensions of finite corank of hilbertian fields, Israel J. Math.18 (1974), 279–307.

    MATH  MathSciNet  Google Scholar 

  11. M. Jarden,The elementary theory of ω-free Ax fields, Invent. Math.38 (1976), 187–206.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Jarden,Intersections of conjugate fields of finite corank over hilbertian fields, J. London Math. Soc.53 (1978), 393–396.

    Article  MathSciNet  Google Scholar 

  13. M. Jarden,An analogue of Cebotarev density theorem for fields of finite corank, preprint.

  14. M. Jarden and U. Kiehne,The elementary theory of algebraic fields of finite corank, Invent. Math.30 (1975), 275–294.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Lubotzky,On the non-congruence structure of SL2, in preparation.

  16. A. Lubotzky,Combinatorial group theory for pro-p-groups, in preparation.

  17. R. C. Lyndon and P. E. Schupp,Combinatorial Group Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

    MATH  Google Scholar 

  18. R. C. Oltikar and L. Ribes,On the Frattini subgroup of free products of profinite groups, Comm. Algebra7 (3) (1979), 313–325.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Ribes,Introduction of profinite groups and Galois cohomology, Queens papers in pure and applied mathematics, no. 24 (1970).

  20. J.-P. Serre,Sur la dimension cohomologique des groupes profinis, Topology3 (1975), 413–420.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author was supported by NSF grant MCS76-11625.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubotzky, A., van den Dries, L. Subgroups of free profinite groups and large subfields of\(\mathop Q\limits^ \sim \) . Israel J. Math. 39, 25–45 (1981). https://doi.org/10.1007/BF02762851

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02762851

Keywords

Navigation