Skip to main content
Log in

Thermodynamics of Na2O-SiO2 melts

Inorganic Materials Aims and scope

Abstract

The thermodynamic properties of Na2O-SiO2 solid (942-1285 K) and liquid (1103-1719 K, 19.5-61.8 mol % Na2O) silicates were studied by Knudsen cell mass spectrometry. To determine the activities of the constituent oxides, these were reduced to volatile suboxides directly in effusion cells. Mass spectra of the saturated vapor over Na2O-SiO2 showed the presence of the Na+, Na2O+, NaO+, O +2 , TaO+, TaO +2 , NbO+, NbO2, MoO+, MoO +2 , MoO +3 , and NiO+ ions resulting from the ionization of the Na, Na2O, NaO, NaO2,O2, TaO, TaO2, NbO, NbO2, MoO, MoO2, MoO3, and NiO molecules. The activities calculated by two different procedures were found to coincide within the experimental error. The enthalpies and Gibbs energies of formation of sodium silicates were shown to be extremely low. The formation of solid orthoand metasilicates is accompanied by a decrease in entropy, in contrast to the other sodium silicates. Sodium orthosilicate has the lowest enthalpy and Gibbs energy. A thermodynamic model for Na2O-SiO2 melts is proposed which relies on associated solution theory and takes into account silica polymerization. The model describes the composition and temperature dependences of the activities of the constituent oxides in the melt with an accuracy no worse than the experimental error (2-3%). The model, in combination with the thermodynamic functions of formation of all the intermediate solid phases, was used to calculate phase equilibria in the Na2O-SiO2 system. The results agree well with the experimental data obtained by physicochemical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Zaitsev, A.I. and Mogutnov, B.M., Thermodynamic Properties and Phase Equilibria in the MnO-SiO2 System,J. Mater. Chem., 1995, vol. 5, pp. 1063–1073.

    Article  CAS  Google Scholar 

  2. Zaitsev, A.I., Litvina, A.D., and Mogutnov, B.M., Thermodynamic Properties of Ca2-SiO2-CaO Melts,Neorg. Mater., 1997, vol. 33, no. 1, pp. 76–86 [Inorg. Mater. (Engl. Transl.), vol. 33, no. 1, pp. 68–77].

    Google Scholar 

  3. Zaitsev, A.I., Litvina, A.D., and Mogutnov, B.M., Thermodynamic Properties and Phase Equilibria in the CaF2-SiO2-Al2O3-CaO System: I. Experimental Study of CaF2-SiO2-Al2O3-CaO Melts,Neorg. Mater., 1997, vol. 33, no. 12, pp. 1489–1498 [Inorg. Mater. (Engl. Transi.), vol. 33, no. 12, pp. 1265-1273].

    Google Scholar 

  4. Zaitsev, A.I. and Mogutnov, B.M., Thermodynamics of CaO-SiO2 and MnO-SiO2 Melts: I. Experimental Study,Neorg. Mater., 1997, vol. 33, no. 7, pp. 839–847 [Inorg. Mater. (Engl. Transi.), vol. 33, no. 7, pp. 707–714].

    Google Scholar 

  5. Zaitsev, A.I., Litvina, A.D., Lyakishev, N.P., and Mogutnov, B.M., Thermodynamics of CaO-Al2O3-SiO2 and CaF2-CaO-Al2O3-SiO2 Melts,J. Chem. Soc., Faraday Trans., 1997, vol. 93, no. 17, pp. 3089–3098.

    Article  CAS  Google Scholar 

  6. Zaitsev, A.I. and Mogutnov, B.M., A General Approach to Thermodynamics of High-Temperature Liquid Solutions,High Temp. Mater. Sci., 1995, vol. 34, nos. 1-3, pp. 155–171.

    CAS  Google Scholar 

  7. Gurvich, L.V., IVTANTERMO: An Automated Database of the Thermodynamic Properties of Substances,Vestn. Akad. Nauk SSSR, 1983, no. 3, pp. 54–65.

  8. Zaitsev, A.I., Korolyov, N.V., and Mogutnov, B.M., The Vapor Pressures and the Heats of Sublimation of CaF2 and SrF2,High Temp. Sci., 1990, vol. 28, pp. 341–350.

    Google Scholar 

  9. Zaitsev, A.I., Korolev, N.V., and Mogutnov, B.M., Vapor Pressures of CaF2 and SrF2,Teplofiz. Vys. Temp., 1989, vol. 27, no. 3, pp. 465–471.

    CAS  Google Scholar 

  10. Hildenbrand, D.L. and Murad, E.,J. Chem. Phys., 1970, vol. 53, p. 3403.

    Article  CAS  Google Scholar 

  11. Lamoreaux, R.H. and Hildenbrand, D.L.,J. Phys. Chem. Ref. Data, 1984, vol. 13, p. 151.

    Article  CAS  Google Scholar 

  12. Steinberg, M. and Schofield, K., A Reevaluation of the Vaporization Behavior of Sodium Oxide and the Bond Strengths of NaO and Na2O: Implications for the Mass Spectrometric Analyses of Alkali/Oxygen Systems,J. Chem. Phys., 1991, vol. 94, no. 5, pp. 3901–3907.

    Article  CAS  Google Scholar 

  13. Kracek, F.C., The System Sodium Oxide-Silica,J. Phys. Chem., 1930, vol. 34, pp. 1583–1598.

    Article  CAS  Google Scholar 

  14. Kracek, F.C., Phase Equilibrium Relations in the System Na2SiO3-Li2SiO3-SiO2,J. Am. Chem. Soc., 1939, vol. 61, pp. 2863–2877.

    Article  CAS  Google Scholar 

  15. D’Ans, J. and Loeffler, J., Untersuchungen im System Na2O-SiO2-ZrO2,Z. Anorg. Allg. Chem., 1930, vol. 191, pp. 1–34.

    Article  CAS  Google Scholar 

  16. Loeffler, J., Über den alkalischen Teil des System Na2O-SiO2,Glastech. Ber., 1969, vol. 42, no. 3, pp. 92–96.

    CAS  Google Scholar 

  17. Williamsom, J. and Glasser, F.P., Phase Relations in the System Na2Si2O5-SiO2,Science (Washington, D.C., 1883-), 1965, vol. 148, no. 6, pp. 1589–1591.

    Article  Google Scholar 

  18. Wu, P., Eriksson, G., and Pelton, A.D., Optimization of the Thermodynamic Properties and Phase Diagrams of the Na2O-SiO2 and K2O-SiO2 Systems,J. Am. Ceram. Soc., 1993, vol. 76, no. 3, pp. 2059–2064.

    Article  CAS  Google Scholar 

  19. Budnikov, P.P. and Matveev, M.A., Synthesis and Properties of Crystalline Na2O · 3SiO2,Dokl. Akad. Nauk SSSR, 1956, vol. 107, pp. 547–550.

    CAS  Google Scholar 

  20. Berman, R.G. and Brown, H.T., The Heat Capacity of Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO: Representation, Estimation, and High Temperature Extrapolation,Contrib. Mineral. Petrol., 1985, vol. 89, pp. 168–183.

    Article  CAS  Google Scholar 

  21. Berman, R.G. and Brown, H.T., Erratum Heat Capacity of Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO: Representation, Estimation, and High Temperature Extrapolation,Contrib. Mineral. Petrol., 1986, vol. 94, p. 262.

    Article  Google Scholar 

  22. Knacke, O., Kubaschewski, O., and Hesselmann, K.,Thermochemical Properties of Inorganic Substances, Berlin: Springer, 1991, 2nd ed.

    Google Scholar 

  23. Hillert, M., Sundman, B., and Wang, X., Assessment of the CaO-SiO2 System,Metall. Trans. B, 1990, vol. 21, pp. 303–312.

    Article  Google Scholar 

  24. Shakhmatkin, B.A. and Shul’ts, M.M., Thermodynamic Properties of Na2O-SiO2 Glass-Forming Melts in the Range 800-1200°C,Fiz, Khim. Stekla, 1980, vol. 6, no. 2, pp. 129–135.

    CAS  Google Scholar 

  25. Frohberg, M.G., Caung, E., and Kapoor, M.L., Measurement of the Activity of the Oxygen Ions in the Liquid Systems Na2O-SiO2 and K2O-SiO2,Arch. Eisenhuttenwes., 1973, vol. 44, no. 8, pp. 585–588.

    CAS  Google Scholar 

  26. Kohsaka, S., Sato, S., and Yokokawa, T.E., Measurements of Molten Oxide Mixtures: III. Sodium Oxide + Silicon Dioxide,J. Chem. Thermodyn., 1979, vol. 11, pp. 547–551.

    Article  CAS  Google Scholar 

  27. Yamaguchi, S., Imai, A., and Goto, K.S., Activity Measurement of Na2O in Na2O-SiO2 Melts Using the Beta-Alumina as the Solid Electrolyte,Scand. J. Metall., 1982, vol. 11, pp. 263–264.

    Google Scholar 

  28. Ravaine, D., Azandegbe, E., and Souquet, J.L., Mesures potentiométriques de chaines éléctrochimiques comprenant des silicates fondus: Interprétation des resultats par un modèle statistique,Silic. Ind., 1975, vol. 12, pp. 333–340.

    Google Scholar 

  29. Neudorf, D.A. and Elliott, J.F., Thermodynamic Properties of Na2O-SiO2-CaO Melts at 1100 to 1200°C,Metall. Trans. B, 1980, vol. 11, pp. 607–614.

    Article  Google Scholar 

  30. Goto, K.S., Yamaguchi, S., and Nagata, K., The Chemical Activity of Component Oxides in Na2O-Based Slags,Proc. of 2nd Int. Symp. on Metallurgical Slags and Fluxes, Lake Tahoe, 1984, pp. 467–481.

  31. Pearce, M.L., Calculation of Oxygen Ion Activities in Sodium Silicate and Sodium Borate Melts,J. Am. Ceram. Soc., 1965, vol. 48, pp. 611–613.

    Article  CAS  Google Scholar 

  32. Pearce, M.L., Solubility of Carbon Dioxide and Variation of Oxygen Ion Activity in Soda-Silica Melts,J. Am. Ceram. Soc., 1964, vol. 47, no. 7, pp. 342–347.

    Article  CAS  Google Scholar 

  33. Rego, D.N., Sigworth, G.K., and Philbrook, W.O., Thermodynamic Study of Na2O-SiO2 Melts at 1300 and 1400°C,Metall. Trans. B, 1985, vol. 16, pp. 313–323.

    Article  Google Scholar 

  34. Tsukihashi, F. and Sano, N., Measurement of the Activity of Na2O in Na2O-SiO2 Melts by Chemical Equilibration Method,Tetsu to Hagane, 1985, vol. 71, no. 7, pp. 815–822.

    CAS  Google Scholar 

  35. Holmquist, S., Oxygen Ion Activity and the Solubility of Sulfur Trioxide in Sodium Silicate Melts,J. Am. Ceram. Soc., 1966, vol. 49, no. 9, pp. 467–473.

    Article  CAS  Google Scholar 

  36. Shul’ts, M.M., Stolyarova, V.I., and Ivanov, G.G., Mass Spectrometric Study of the Thermodynamic Properties of Na2O-SiO2 Melts and Glasses,Fiz. Khim. Stekla, 1987, vol. 13, no. 2, pp. 168–172.

    CAS  Google Scholar 

  37. Chastel, R., Bergman, C., Rogez, J., and Mathieu, J.C., Excess Thermodynamic Functions in Ternary Na2O-K2O-SiO2 Melts by Knudsen Cell Mass Spectrometry,Chem. Geol., 1987, vol. 62, pp. 19–29.

    Article  CAS  Google Scholar 

  38. Piacente, V. and Matousek, J., Mass Spectrometric Determination of Sodium Partial Pressure over the System Na2O-2SiO2,Silicates, 1973, vol. 4, pp. 269–280.

    Google Scholar 

  39. Rudnyi, E.B., Vovk, O.M., Sidorov, L.N.,et al., Activity of the Alkali Oxide in Soda-Silica Melts by the Ionic-Molecular Equilibrium Method,Fiz. Khim. Stekla, 1988, vol. 14, no. 2, pp. 218–225.

    CAS  Google Scholar 

  40. Yamaguchi, S. and Goto, K.S., Activity Measurement on Na2O in Na2O-SiO2-P2O5 Melts at 900-1400°C Using Beta-Alumina Electrolyte,Scand. J. Metall, 1984, vol. 13, pp. 129–136.

    CAS  Google Scholar 

  41. Sokol’skii, V.E., Kazimirov, V.P., and Galinich, V.I., X-ray Diffraction Study of MnO-SiO2 Melts,Izv. Akad. Nauk SSSR, Neorg. Mater., 1983, vol. 19, no. 4, pp. 629–633.

    CAS  Google Scholar 

  42. Sokol’skii, V.E., Galinich, V.I., Kazamirov, V.P.,et al., Structure of MnO-TiO2-SiO2 and MnO-ZrO2-SiO2 Melts,Rasplavy, 1987, vol. 1, no. 6, pp. 34–40.

    CAS  Google Scholar 

  43. Masson, C.R., An Approach to the Problem of Ionic Distribution in Liquid Silicates,Proc. R. Soc. London, A, 1965, vol. 287, no. 1409, pp. 201–221.

    Article  CAS  Google Scholar 

  44. Masson, C.R., Smith, I.B., and Whiteway, S.G., Activities and Ionic Distributions in Liquid Silicates: Application of Polymer Theory,Can. J. Chem., 1970, vol. 48, p. 1456.

    Article  CAS  Google Scholar 

  45. Gaskell, D.R., Thermodynamic Models of Liquid Silicates,Can. Metall Q, 1981, vol. 20, no. 1, pp. 3–19.

    CAS  Google Scholar 

  46. Esin, O.A., The Nature of Molten Metallurgical Slags,Zh. Vses. Khim. O-va. im. D. I. Mendeleeva, 1974, vol. 16, no. 5, pp. 504–514.

    Google Scholar 

  47. Novikov, V.K., Evolution of the Polymer Model of Silicate Melts,Rasplavy, 1987, vol. 1, no. 6, pp. 21–33.

    CAS  Google Scholar 

  48. Pelton, A.D. and Blander, M., Thermodynamic Analysis of Ordered Solutions by Modified Quasichemical Approach-Application to Silicate Slags,Metall. Trans. B, 1986, vol. 17, pp. 807–815.

    Article  Google Scholar 

  49. Haller, W., Blackburn, D.H., and Simmons, J.H., Miscibility Gaps in Alkali-Silicate Binaries-Data and Thermodynamic Interpretation,J. Am. Ceram. Soc., 1974, vol. 57, no. 3, pp. 120–126.

    Article  CAS  Google Scholar 

  50. Moriya, Y., Warrington, D.H., and Douglas, R.W., Metastable Liquid Immiscibility in Some Binary and Ternary Alkali Silicate Glasses,Phys. Chem. Glasses, 1967, vol. 8, no. l, pp. 19–25.

    CAS  Google Scholar 

  51. Andreev, N.S., Goranov, D.A., Porai-Koshits, E.A., and Sokolov, Yu.G., Chemically Nonuniform Structure of Soda-Silica and Lithia-Silica Glasses, inStekloobraz- noe sostoyanie. Vyp. 1: Katalizirovannaya kristallizatsiya stekla (Glassy State. Issue 1: Catalyzed Glass Crystallization), Leningrad, 1963, pp. 46–53.

  52. Andreev, N.S. and Aver’yanov, V.I., Structural Studies of Soda-Silica Glasses in the Range of Metastable Segregation,Trudy IV vsesoyuznogo soveshchaniya po stekloobraznomu sostoyaniyu (Proc. IV All-Union Conf. on Glassy State), Moscow,’ 1965, pp. 94–97.

  53. Hammel, J.J.,Proc. VII Int. Congress on Glass, Charleroi, 1966, vol. 1, paper 36.

  54. Porai-Koshits, E.A. and Averjanov, V.I., Primary and Secondary Phase Separation of Sodium Silicate Glasses,J. Non-Cryst. Solids, 1968, vol. 1, no. 1, pp. 29–38.

    Article  CAS  Google Scholar 

  55. Charles, R.J., Origin of Immiscibility in Silicate Solutions,Phys. Chem. Glasses, 1969, vol. 10, no. 5, pp. 169–178.

    CAS  Google Scholar 

  56. Schlackenatlas, Düsseldorf: Stahleisen, 1981, p. 35.

  57. Kracek, F.C., Bowen, N.L., and Morrey, G.W., Equilibrium Relations and Factors Influencing Their Determination in the System K2SiO3-SiO2,J. Phys. Chem., 1937, vol. 41, pp. 1183–1193.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, A.I., Shelkova, N.E. & Mogutnov, B.M. Thermodynamics of Na2O-SiO2 melts. Inorg Mater 36, 529–543 (2000). https://doi.org/10.1007/BF02757949

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02757949

Keywords

Navigation