Skip to main content
Log in

Protein tyrosine kinase-mediated pathways in G protein-coupled receptor signaling

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Abundant evidence has indicated that protein tyrosine kinases (PTKs) convey signals from G protein-coupled receptors (GPCRs) to regulate cell proliferation, migration, adhesion, and potentialy cellular transformation. Molecular mechanisms by which PTKs regulate such diverse effects in GPCR signaling are not well understood. Recently, an unifying theme has emerged where both growth factors and GPCRs utilize protein tyrosine kinase activity and the highly conserved Ras/MAP kinase pathway to control mitogenic signals. Additionally, PTKs are also involved in the regulation of signal transmission from GPCRs to activation of the JNK/SAPK kinase pathway. Furthermore novel insights in chemokine receptor-activated PTKs and their role in mediating cell functions are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strader, C. D., Fong, T. M., Tota, M. R., Underwood, D., and Dixon, R. A. (1994) Structure and function of G protein-coupled receptors.Annu. Rev. Biochem. 63, 101–132.

    Article  PubMed  CAS  Google Scholar 

  2. Neer, E. J. (1995) Heterotrimeric G proteins: Organizers of transmembrane signals.Cell 80, 249–257.

    Article  PubMed  CAS  Google Scholar 

  3. Bourne, H. R. (1997) How receptors talk to trimeric G proteins.Curr. Opin. Cell Biol. 9, 134–142.

    Article  PubMed  CAS  Google Scholar 

  4. van Biesen, T., Luttrell, L. M., Hawes, B. E., and Lefkowitz, R. J. (1996) Mitogenic signaling via G protein-coupled receptors.Endocrine Rev. 6, 698–714.

    Article  Google Scholar 

  5. Dhanasekaran, N., Heasley, L. E., and Johnson, G. L. (1995) G protein-coupled receptor systems involved in cell growth and oncogenesis.Endocr. Rev. 16, 259–270.

    Article  PubMed  CAS  Google Scholar 

  6. Arvanitakis, L., Geras-Raaka, E., and Gershengorn, M. C. (1998) Constitutive signaling G-protein-coupled receptors and human disease.TEM 9, 27–31.

    PubMed  CAS  Google Scholar 

  7. Allen, L. F., Lefkowitz, R. J., Caron, M. G., and Cotecchia S. (1991) G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the α1B-adrenergic receptor enhances mitogenesis and tumorigenicity.Proc. Natl. Acad. Sci. USA 88, 11,354–11,358.

    Article  CAS  Google Scholar 

  8. Bais, C., Santomasso, B., Coso, O., Arvanitakis, L., Raaka, E. G., Gutkind, J. S., et al. (1998) G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator.Nature 391, 86–89.

    Article  PubMed  CAS  Google Scholar 

  9. Herskowitz, I. (1995) MAP kinase pathways in yeast: for mating and more.Cell 80, 187–197.

    Article  PubMed  CAS  Google Scholar 

  10. Marshall, C. J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation.Cell 80, 179–185.

    Article  PubMed  CAS  Google Scholar 

  11. Sugden, P. H., and Clerk, A. (1997) Regulation of the ERK subgroup of MAP kinase cascade through G protien-coupled receptors.Cell Signal. 9, 337–351.

    Article  PubMed  CAS  Google Scholar 

  12. Gutkind, J. S. (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades.J. Biol. Chem. 273, 1839–1842.

    Article  PubMed  CAS  Google Scholar 

  13. Crespo, P., Xu N., Simonds, W. F., and Gutkind, J. S. (1994) Rasdependent activation of MAP kinase pathway mediated by G-protein βγ subunits.Nature 369, 418–420.

    Article  PubMed  CAS  Google Scholar 

  14. Faure, M., Voyno-Yasenetskaya, T. A., and Bourne, H. R. (1994) cAMP and beta gamma subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells.J. Biol. Chem. 269, 7851–7854.

    PubMed  CAS  Google Scholar 

  15. Hawes, B. E., van Biesen, T., Koch, W. J., Luttrell, L. M., and Lefkowitz, R. J. (1995) Distinct pathways of Gi- and Gq-mediated mitogen-activated protein kinase activation.J. Biol. Chem. 270, 17,148–17,153.

    Article  CAS  Google Scholar 

  16. Koch, W. J., Hawes, B. E., Inglese, J., Luttrell, L. M., and Lefkowitz, R. J. (1994) Cellular expression of the carboxyl terminus of a G protein-coupled receptor kinase attenuates G beta gamma-mediated signaling.J. Biol. Chem. 269, 6193–6197.

    PubMed  CAS  Google Scholar 

  17. van Biesen, T., Hawes, B. E., Luttrell, D. K., Krueger, K. M., Touhara, K., Porfiri, E., et al. (1995) Receptor-tyrosine-kinase- and Gβγ-mediated MAP kinase activation by a common signalling pathway.Nature 376, 781–784.

    Article  PubMed  Google Scholar 

  18. Gupta, S. K., Gallego, C., Johnson, G. L., and Heasley, L. E. (1992) MAP kinase is constitutively activated in gip2 and src transformed rat 1a fibroblasts.J. Biol. Chem. 267, 7987–7990.

    PubMed  CAS  Google Scholar 

  19. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S., and Schlessinger, J. (1996) A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.Nature 383, 547–550.

    Article  PubMed  CAS  Google Scholar 

  20. Kolch, W., Heidecker, G., Kochs, G., Hummel, R., Vahidi, H., Mischak, H., et al. (1993) Protein kinase C alpha activates RAF-1 by direct phosphorylation.Nature 364, 249–252.

    Article  PubMed  CAS  Google Scholar 

  21. Schönwasser, D. C., Marais, R. M., Marshall, C. J., and Parker, P. J. (1998) Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes.Mol. Cell. Biol. 18, 790–798.

    PubMed  Google Scholar 

  22. Marais, R., Light, Y., Mason, C., Paterson, H., Olson, M. F., and Marshall, C. J. (1998) Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C.Science 280, 109–112.

    Article  PubMed  CAS  Google Scholar 

  23. Crespo, P., Cachero, T. G., Xu, N., and Gutkind, J. S. (1995) Dual effect of beta-adrenergic receptors on mitogen-activated protein kinase. Evidence for a beta gamma-dependent activation and a G alpha s-cAMP-mediated inhibition.J. Biol. Chem. 270, 25,259–25,265.

    CAS  Google Scholar 

  24. Wan, Y. and Huang, X. Y. (1998) Analysis of the Gs/mitogen-activated protein kinase pathway in mutant S49 cells.J. Biol. Chem. 273, 14,533–14,537.

    CAS  Google Scholar 

  25. Cook, S. J., Rubinfeld, B., Albert, I., and McCormick, F. (1993) Rap V12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts.EMBO J. 12, 3475–3485.

    PubMed  CAS  Google Scholar 

  26. Ullrich, A. and Schlessinger, J. (1990) Signal transduction by receptors with tyrosine kinase activity.Cell 61, 203–212.

    Article  PubMed  CAS  Google Scholar 

  27. Neet, K. and Hunter, T. (1996) Vertebrate non-receptor protein-tyrosine kinase families.Genes Cells 1, 147–169.

    Article  PubMed  CAS  Google Scholar 

  28. Treisman, R. (1996) Regulation of transcription by MAP kinase cascades.Curr. Opin. Cell. Biol. 8, 205–215.

    Article  PubMed  CAS  Google Scholar 

  29. Lev, S., Moreno, H., Martinez, R., Canoll, P., Peles, E., Musacchio, J. M. Plowman, G. D., Rudy, B., and Schlessinger, J. (1995) Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions.Nature 376, 737–745.

    Article  PubMed  CAS  Google Scholar 

  30. Daub, H., Weiss, F. U., Wallasch, C., and Ullrich, A. (1996) Role of transactivation of the EGF receptor in signaling by G protein-coupled receptors.Nature 379, 557–560.

    Article  PubMed  CAS  Google Scholar 

  31. Bence, K., Ma, W., Kozasa, T., and Huang, X. Y. (1997) Direct stimulation of Bruton's tyrosine kinase by Gq-protein a subunit.Nature 389, 296–299.

    Article  PubMed  CAS  Google Scholar 

  32. Della Rocca, G. J., van Biesen, T., Daaka, Y., Luttrell, D. K., Luttrell, L. M., and Lefkowitz, R. J. (1997) Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase.J. Biol. Chem. 272, 19,125–19,132.

    CAS  Google Scholar 

  33. Lopez-Ilasaca, M., Crespo, P., Pellici, P. G., Gutkind, J. S., and Wetzker, R. (1997) Linkage of G protein-coupled receptors to the MAPK signaling pathways through PI 3-kinase γ.Nature 275, 394–397.

    CAS  Google Scholar 

  34. Wan, Y., Bence, K., Hata, A., Kurosaki, T., Veillette, A., and Huang, X. Y. (1997) Genetic evidence for a tyrosine kinase cascade preceding the mitogen-activated protein kinase cascade in vertebrate G protein signaling.J. Biol. Chem. 272, 17,209–17,215.

    Article  CAS  Google Scholar 

  35. Zwick, E., Daub, H., Aoki, N., Yamaguchi-Aoki, Y., Tinhofer, I., Maly, K., and Ullrich, A. (1997) Critical role of calcium-dependent epidermal growth factor receptor tansactivation in PC12 cell membrane depolarization and bradykinin signaling.J. Biol. Chem. 272, 24,767–24,770.

    Article  CAS  Google Scholar 

  36. Superti-Furga, G. and Courtneidge, S. A. (1995) Structure-function relationships in Src family and related protein tyrosine kinases.Bioessays 17, 321–330.

    Article  PubMed  CAS  Google Scholar 

  37. Luttrell, L. M., Della Rocca, G. J., van Biesen, T., Luttrell, D. K., and Lefkowitz, R. J. (1997) Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor.J. Biol. Chem. 272, 4637–4644.

    Article  PubMed  CAS  Google Scholar 

  38. Touhara, K., Hawes, B. E., van Biesen, T., and Lefkowitz, R. J. (1995) G protein βγsubunits stimulate phosphorylation of Shc adapter protein.Proc. Natl. Acad. Sci. USA 92, 9284–9287.

    Article  PubMed  CAS  Google Scholar 

  39. Chen, Y., Grall, D., Salcini, A. E., Pelicci, P. G., Pouyssegur, J., and van Obberghen-Schilling, E. (1996) Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor.EMBO J. 15, 1037–1044.

    PubMed  CAS  Google Scholar 

  40. Sadoshima, J. and Izumo, S. (1996) The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes.EMBO J. 15, 775–787.

    PubMed  CAS  Google Scholar 

  41. Gusovsky, F., Lueders, J. E., Kohn, E. C., and Felder, C. C. (1993) Muscarinic receptor-mediated tyrosine phosphorylation of phospholipase C-gamma. An alternative mechanism for cholinergic-induced phosphoinositide breakdown.J. Biol. Chem. 268, 7768–7772.

    PubMed  CAS  Google Scholar 

  42. Kamat, A. and Carpenter, G. (1997) Phospholipase {ie383-1}: Regulation of enzyme function and role in growth factor-dependent signal transduction.Cytokine Growth Factor Rev. 2, 109–117.

    Article  Google Scholar 

  43. Kranenburg, O., Verlaan, I., Hordijk, P. L., and Moolenaar, W. H. (1997) Gi-mediated activation of the Ras/MAP kinase pathway involves a 100 kDa tyrosine-phosphorylated Grb2 SH3 binding protein, but not Src nor Shc.EMBO J. 16, 3097–3105.

    Article  PubMed  CAS  Google Scholar 

  44. Karin, M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases.J. Biol. Chem. 270, 16,483–16,486.

    CAS  Google Scholar 

  45. Needham, L. K. and Rozengurt, E. (1998) {ie384-1} and {ie384-2} Stimulate Rho-dependent Tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130 Crk-associated substrate.J. Biol. Chem. 273, 14,626–14,632.

    Article  CAS  Google Scholar 

  46. Casamassima, A. and Rozengurt, E. (1997) Tyrosine phosphorylation of p130cas by bombesin, lysophosphatidic acid, phorbol esters, and platelet-derived growth factor. Signaling pathways and formation of a p130cas-Crk complex.J. Biol. Chem. 272, 9363–9370.

    Article  PubMed  CAS  Google Scholar 

  47. Takahashi, T., Kawahara, Y., Taniguchi, T., and Yokoyama, M. (1998) Tyrosine phosphorylation and association of p130Cas and c-Crk II by ANG II in vascular smooth muscle cells.Am. J. Physiol. 274, H1059-H1065.

    PubMed  CAS  Google Scholar 

  48. Yu, H., Li, X., Marchetto, G. S., Dy, R., Hunter, D., Calvo, B., Dawson, T. L., Wilm, M., Anderegg, R. J., Graves, L. M., and Earp, H. S. (1996) Activation of a novel calcium-dependent proteintyrosine kinase. Correlation with c-Jun N-terminal kinase but not mitogen-activated protein kinase activation.J. Biol. Chem. 271, 29,993–29,998.

    CAS  Google Scholar 

  49. Ganju, R. K., Dutt, P., Wu, L., Newman, W., Avraham, H., Avraham, S., and Groopman, J. E. (1998) Beta-chemokine receptor CCR5 signals via the novel tyrosine kinase RAFTK.Blood 91, 791–797.

    PubMed  CAS  Google Scholar 

  50. Tokiwa, G., Dikic, I., Lev, S., and Schlessinger, J. (1996) Activation of Pyk2 by stress signals and coupling with JNK signaling pathway.Science 273, 792–794.

    Article  PubMed  CAS  Google Scholar 

  51. Devary, Y., Gottlieb, R. A., Smeal, T., and Karin, M. (1992) The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases.Cell 171, 1081–1091.

    Article  Google Scholar 

  52. Derijard, B., Hibi, M., Wu, I. H., Barrett, T., Su, B., Deng, T., Karin, M., and Davis, R. J. (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain.Cell 76, 1025–1037.

    Article  PubMed  CAS  Google Scholar 

  53. Pawson, T. (1995) Protein modules and signalling networks.Nature 373, 573–580.

    Article  PubMed  CAS  Google Scholar 

  54. Boguski, M. S. and McCormick, F. (1993) Proteins regulating Ras and its relatives.Nature 366, 643–654.

    Article  PubMed  CAS  Google Scholar 

  55. Pawson, T. and Scott, J. D. (1997) Signaling through scaffold, anchoring, and adaptor proteins.Science 278, 2075–2080.

    Article  PubMed  CAS  Google Scholar 

  56. Margolis, B. (1992) Proteins with SH2 domains: transducers in the tyrosine kinase signaling pathway.Cell Growth Differ. 3, 73–80.

    PubMed  CAS  Google Scholar 

  57. Tanaka, S., Morishita, T., Hashimoto, Y., Hattori, S., Nakamura, S., Shibuya, M., et al. (1994) C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins.Proc. Natl. Acad. Sci. USA 91, 3443–3447.

    Article  PubMed  CAS  Google Scholar 

  58. Smit, L., van der Horst, G., and Borst, J. (1996) Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors.J. Biol. Chem. 271, 8564–8569.

    Article  PubMed  CAS  Google Scholar 

  59. Anafi, M., Kiefer, F., Gish, G. D., Mbamalu, G., Iscove, N. N., and Pawson, T. (1997) SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.J. Biol. Chem. 272, 27,805–27,811.

    Article  Google Scholar 

  60. Hall, A. (1998) Rho GTPases and the actin cytoskeleton.Science. 279, 509–514.

    Article  PubMed  CAS  Google Scholar 

  61. Nimnual, A. S., Yatsula, B. A., and Bar-Sagi, D. (1998) Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos.Science 279, 560–563.

    Article  PubMed  CAS  Google Scholar 

  62. Su, Y. C., Han, J., Xu, S., Cobb, M., and Skolnik, E. Y. (1997) NIK is a new Ste20-related kinase that binds NCK and MEKK1 and activates the SAPK/JNK cascade via a conserved regulatory domain.EMBO J. 16, 1279–1290.

    Article  PubMed  CAS  Google Scholar 

  63. Murphy, P. M. (1996) Chemokine receptors: structure, function and role in microbial pathogenesis.Cytokine Growth Factor Rev. 7, 47–64.

    Article  PubMed  CAS  Google Scholar 

  64. Premack, B. A., and Schall, T. J. (1996) Chemokine receptors: gateways to inflammation and infection.Nature Med. 2, 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  65. Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A. (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor.Science 272, 872–877.

    Article  PubMed  CAS  Google Scholar 

  66. Bais, C., Santomasso, B., Coso, O., Avanitakits, L., Raka, E. G., Gutkind, J. S., Asch, A. S., Cesarman, E., Gerhengorn, M. C. and Mesri, (1998) G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator.Nature 391, 86–89.

    Article  PubMed  CAS  Google Scholar 

  67. Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., et al. (1996) Identification of a major co-receptor for primary isolates of HIV-1.Nature 381, 661–666.

    Article  PubMed  CAS  Google Scholar 

  68. Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., et al. (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5.Nature 381, 667–673.

    Article  PubMed  CAS  Google Scholar 

  69. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., et al. (1996) The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates.Cell 85, 1135–1148.

    Article  PubMed  CAS  Google Scholar 

  70. Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G., and Doms, R. W. (1996) A dualtropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors.Cell 85, 149–158.

    Article  Google Scholar 

  71. Alkhatib, G., Locati, M., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1997) HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: independence from G protein signaling and importance of coreceptor downmodulation.Virology 234, 340–348.

    Article  PubMed  CAS  Google Scholar 

  72. Baggiolini, M., Dewald, B., and Moser, B. (1994) Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines.Adv. Immunol. 55, 97–179.

    Article  PubMed  CAS  Google Scholar 

  73. Davis, C. B., Dikic, I., Unutmaz, D., Hill, C. M., Arthos, J., Siani, M. A., Thompson, D. A., Schlessinger, J., and Littman, D. R. (1997) Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5.J. Exp. Med. 186, 1793–1798.

    Article  PubMed  CAS  Google Scholar 

  74. Arai, H., and Charo, I. F. (1996) Differential regulation of G-protein-mediated signaling by chemokine receptors.J. Biol. Chem. 271, 21,814–21,819.

    CAS  Google Scholar 

  75. al-Aoukaty, A., Schall, T. J., and Maghazachi, A. A. (1996) Differential coupling of CC chemokine receptors to multiple heterotrimeric G proteins in human interleukin-2-activated natural killer cells.Blood 87, 4255–4260.

    PubMed  CAS  Google Scholar 

  76. Wong, M. and Fish, E. N. RANTES and MIP-1α activate stats in T cells.J. Biol. Chem. 273, 309–314.

  77. Bacon, K. B., Premack, B. A., Gardner, P., and Schall, T. J. (1995) Activation of dual T cell signaling pathways by the chemokine RANTES.Science 269, 1727–1730.

    Article  PubMed  CAS  Google Scholar 

  78. Bacon, K. B., Schall, T. J., and Dairaghi, D. J. (1998) RANTES activation of phospholipase D in Jurkat T cells: requirement of GTP-binding proteins ARF and RhoA.Immunol. 160, 1894–1900.

    CAS  Google Scholar 

  79. Farzan, M., Choe, H., Martin, K. A., Sun, Y., Sidelko, M., Mackay, C. R., Gerard, N. P., Sodroski, J., and Gerard, C. (1997) HIV-1 entry and macrophage inflammatory protein-1beta-mediated signaling are independent functions of the chemokine receptor CCR5.J. Biol. Chem. 272, 6854–6857.

    Article  PubMed  CAS  Google Scholar 

  80. Weissman, D., Rabin, R. L., Arthos, J., Rubbert, A., Dybul, M., Swofford, R., et al. (1997) Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor.Nature 389, 981–985.

    Article  PubMed  CAS  Google Scholar 

  81. Bacon, K. B., Szabo, M. C., Yssel, H., Bolen, J. B., and Schall, T. J. (1996) RANTES induces tyrosine kinase activity of stably complexed p125FAK and ZAP-70 in human T cells.J. Exp. Med. 184, 873–882.

    Article  PubMed  CAS  Google Scholar 

  82. Dikic, I. and Schlessinger, J. (1998) Identification of a new Pyk2 isoform implicated in chemokine and antigen receptor signaling.J. Biol. Chem. 273, 14,301–14,308.

    Article  CAS  Google Scholar 

  83. Li, X., Hunter, D., Morris, J., Haskill, J. S., and Earp, H. S. (1998) A calcium-dependent tyrosine kinase splice variant in human monocytes. Activation by a two-stage process involving adherence and a subsequent intracellular signal.J. Biol. Chem. 273, 9361–9364.

    Article  PubMed  CAS  Google Scholar 

  84. Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1.Science 272, 1955–1958.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dikic, I., Blaukat, A. Protein tyrosine kinase-mediated pathways in G protein-coupled receptor signaling. Cell Biochem Biophys 30, 369–387 (1999). https://doi.org/10.1007/BF02738120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738120

Index Entries

Navigation