Skip to main content
Log in

Upregulation of cAMP-specific PDE-4 activity following ligation of the TCR complex on thymocytes is blocked by selective inhibitors of protein kinase C and tyrosyl kinases

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We have previously shown that the major cAMP phosphodiesterase (PDE) isoforms present in murine thymocytes are the cGMP-stimulated PDE activity (PDE-2) and the cAMP-specific PDE activity (PDE-4), and that these isoforms are differentially regulated following ligation of the TCR (Michie, A. M., Lobban, M. D., Mueller, T., Harnett, M. M., and Houslay, M. D. [1996]Cell. Signalling 8, 97–110). We show here that the anti-CD3-stimulated elevation in PDE-4 activity in murine thymocytes is dependent on protein tyrosine kinase and protein kinase C (PKC)-mediated signals as the TCR-coupled increase in PDE-4 activity can be abrogated by both the tyrosine kinase inhibitor, genistein, and the PKC selective inhibitors chelerythrine and staurosporine. Moreover, the PKC-activating phorobol ester, phorbol-12-myristate, 13-acetate (PMA) caused an increase in PDE-4 activity, similar to that observed in cells challenged with anti-CD3 monoclonal antibodies and which was not additive with cochallenge using anti-CD3 antibodies. Both the PMA-and the anti-CD3 antibody-mediated increases in PDE-4 activity were blocked by treatment with either cycloheximide or actinomycin D. Despite the upregulation of PDE-4 activity consequent to TCR ligation, intracellular cAMP levels increased on challenge of thymocytes with anti-CD3 antibody, indicating that adenylate cyclase activity was also increased by TCR ligation. It is suggested that the anti-CD3-mediated increase in PDE-4 activity was owing to a rapid PKC-dependent induction of PDE-4 activity following crosslinking of the TCR complex. This identifies “crosstalk” occurring between the PKA and PKC signaling pathways initiated by ligation of the antigen receptor in murine thymocytes. That both adenylate cyclase and PDE-4 activities were increased may indicate the presence of compartmentalized cAMP responses present in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAMP:

cyclic 3′,5′ adenosine monophosphate

cGMP:

cyclic 3′,5′ guanosine monophosphate

PDE:

phosphodiesterase

TCR:

T-cell antigen receptor/CD3 complex

PHA:

phytohemagglutinin

IBMX:

isobutylmethylxanthine

rolipram:

4-(3-[cyclopentoxyl]-4-methoxyphenyl)-2-pyrrolidone

EHNA:

erythro-9-(2-hyroxy-3-nonyl)-adenine (previously known as MEP-1)

genistein:

4,5,7-trihydroxyisoflavone

H89:

N-(2-[{p-bromocinnamyl}amino]ethyl)-5-isoquinolinesulfonamide

PMA:

phorbol-12-myristate, 13-acetate

tyrphostin A1:

α-cyano-(4-methoxy)cinamonitrile

tyrphostin A25:

α-cyano-(3,4,5 trihydroxy)-cinnamonitrole

PTK:

protein tyrosine kinase

PIP2 :

phosphatidylinositol-4,5-bis-phosphate

IP3 :

inositol-1,4,5-trisphosphate

DAG:

diacylglycerol

PKA:

cAMP-dependent protein kinase

PKC:

protein kinase C

PI-3-K:

phosphatidylinositol-3-kinase

PTP:

protein tyrosine kinase

References

  1. Michie, A. M., Harnett, M. M., and Houslay, M. D. (1997) Cyclic nucleotide signalling throughout T cell maturation, in Lymphocyte Signalling: Mechanism, Subversion and Manipulation (Harnett, M. M. and Rigley, K. P., eds.), John Wiley, Chichester, in press

    Google Scholar 

  2. Kammer, G. M. (1988) The adenylate cyclase-cAMP-protein kinase pathway and regulation of the immune response.Immunol. Today 9, 222–229.

    Article  PubMed  CAS  Google Scholar 

  3. Rochette-Egly, C., and Kempf, J. (1981) Cyclic nucleotides and calcium in human lymphocytes induced to divide.J. Physiol. (Paris)77, 721–725.

    CAS  Google Scholar 

  4. Wang, T., Sheppard, J. R., and Foker, J. E. (1978) Rise and fall of cyclic AMP required for onset of lymphocyte DNA synthesis.Science 201, 155–157.

    Article  PubMed  CAS  Google Scholar 

  5. Bach, M.-A., Fournier, C., and Bach, J.-F. (1975) Regulation of π-antigen expression by agents altering cyclic AMP level and by thymic factor. Ann. NY Acad. Sci.249, 316–327.

    Article  PubMed  CAS  Google Scholar 

  6. Scheid, M. P., Goldstein, G., Hammerling, U., and Boyse, E. A. (1975) Lymphocytes differentiation from precursor cellsin vitro. Ann. NYAcad. Sci. 249, 531–540.

    Article  PubMed  CAS  Google Scholar 

  7. Kaye, J. and Ellenberger, D. L. (1992) Differentiation of an immature T cell line: A model of thymic positive selection.Cell 71, 423–435.

    Article  PubMed  CAS  Google Scholar 

  8. McConkey, D. J., Orrenius, S., and Jondal, M. (1990) Agents that elevate cAMP stimulate DNA fragmentation in thymocytes.J. Immunol. 145, 1227–1230.

    PubMed  CAS  Google Scholar 

  9. Butcher, R. W., Drummond, G. I., and Perrot-Yee, S. (1961)J. Biol. Chem. 236, 1126–2208.

    Google Scholar 

  10. Butcher, R. W. and Sutherland, E. W. (1962) Adenosine 3′5′-phosphate in biological materials.J. Biol. Chem. 237, 1244–1250.

    PubMed  CAS  Google Scholar 

  11. Beavo, J. A., Conti M., and Heaslip, R. J. (1994) Multiple cyclic nucleotide phosphodiesterases.Mol. Pharmacol. 46, 399–405.

    PubMed  CAS  Google Scholar 

  12. Bolger, G. B. (1994) Molecular biology of the cAMP-specific cyclic nucleotide phosphodiesterases.Cell Signaling 6, 851–859.

    Article  CAS  Google Scholar 

  13. Conti, M., Nemoz, G., Sette, C., and Vincini, E. (1995) Recent progress in understanding the hormonal regulation of phosphodiesterases.Endocr. Rev. 16, 370–389.

    Article  PubMed  CAS  Google Scholar 

  14. Houslay, M. D. and Kilgour, E. (1990) Cyclic nucleotide phosphodiesterases in liver—a review of their characterisation, regulation by insulin and glucagon and their role in controlling cyclic AMP concentrations, inMolecular Pharmacology of Cell Regulation (Beavo, J. A. and Houslay, M. D., eds.), John Wiley, Chichester, pp. 299–316.

    Google Scholar 

  15. Reeves, M. L. and England, P. J. (1990) Cardiac phosphodiesterases and the functional effects of selective inhibitors, inMolecular Pharmacology of Cell Regulation (Beavo, J. A. and Houslay, M. D., eds.), John Wiley, Chichester, pp. 299–316.

    Google Scholar 

  16. Epstein, P. M., Mills, J. S., Hersh, E. M., Strada, S. J., and Thompson, W. J. (1980) Activation of cyclic nucleotide PDE from isolated human peripheral blood lymphocytes by mitogenic agents.Cancer Res. 40, 379–386.

    PubMed  CAS  Google Scholar 

  17. Hurwitz, R. L., Hirsch, K. M., Clark, D. J., Holcombe, V. N., and Hurwitz, M. Y. (1990) Induction of a Ca/CaM PDE during PHA stimulated lymphocyte mitogenesis.J. Biol. Chem. 265, 8901–8907.

    PubMed  CAS  Google Scholar 

  18. Marcoz, P., Prigent, A. F., Lagarde, M., and Nemoz, G. (1993) Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents.Mol. Pharmacol. 44, 1027–1035.

    PubMed  CAS  Google Scholar 

  19. Meskini, N., Hosni, M., Nemoz, G., Lagarde, M., and Pringent, A.-F. (1992) Early increase in lymphocyte cyclic nucleotide phosphodiesterase activity upon mitogenic activation of human peripheral blood mononuclear cells.J. Cell. Physiol. 150, 140–148.

    Article  PubMed  CAS  Google Scholar 

  20. Beltman, J., Sonnenberg, W. K., and Beavo, J. A. (1993) The role of protein phosphorylation in the regulation of cyclic nucleotide phosphodiesterases.Mol. Cell. Biol. 127/128, 239–253.

    CAS  Google Scholar 

  21. Degerman, E., Smith, C. J., Tornqvist, H., Vasta, V., and Belfrage, P., et al. (1990) Evidence that insulin and isoprenaline activate the cyclic GMP-inhibited lowK m cyclic AMP phosphodiesterase in rat fat cells by phosphorylation.Proc. Natl. Acad. Sci. USA 87, 533–537.

    Article  PubMed  CAS  Google Scholar 

  22. Kilgour, E., Anderson, N. G., and Houslay, M. D. (1989) Activation and phosphorylation of the “dense-vesicle” high-affinity cyclic AMP phosphodiesterase by cyclic AMP-dependent protein kinase.Biochem. J. 260, 27–39.

    PubMed  CAS  Google Scholar 

  23. Manganiello, V. C., Smith, C. J., Degerman, E., and Belfrage, P. (1990) Cyclic GMP-inhibited cyclic nucleotide phosphodiesterases.Mol. Pharmacol. Cell Reg. 2, 87–116.

    CAS  Google Scholar 

  24. Pyne, N. J., Cushley, W., Nimmo, H. G., and Houslay, M. D. (1989) Insulin stimulates the tyrosyl phosphorylation and activation of the 52 kDa peripheral plasma-membrane cyclic AMP phosphodiesterase in intact hepatocytes.Biochem. J. 261, 897–901.

    PubMed  CAS  Google Scholar 

  25. Swinnen, J. V., Joseph, D. R., and Conti, M. (1989). The mRNA encoding a high affinity cAMP phosphodiesterase is regulated by hormones and cAMP.Proc. Natl. Acad. Sci. USA 86, 8197–8201.

    Article  PubMed  CAS  Google Scholar 

  26. Hall, I. P. and Hill, S. J. (1992). Effects of isozyme selective phosphodiesterase inhibitors on bovine tracheal smooth muscle tone.Biochem. Pharmacol. 43, 15–17.

    Article  PubMed  CAS  Google Scholar 

  27. Moore, J. B., Combs, D. W. and Tobia, A. J. (1991) Bemoradan—a novel inhibitor of rolipram-insensitive cyclic AMP phosphodiesterase from canine heart tissue.Biochem. Pharmacol. 42, 679–683.

    Article  PubMed  CAS  Google Scholar 

  28. Sette, C., Iona, S., and Conti, M. (1994) The short-term activation of a rolipram-sensitive, cAMP-specific phosphodiesterase by thyroidstimulating hormone in thyroid FRTL-5 cells is mediated by a cAMP-dependent phosphorylation.J. Biol. Chem. 269, 9245–9252.

    PubMed  CAS  Google Scholar 

  29. Swinnen, J. V., Tsikalas, K. E., and Conti, M. (1991) Properties and hormonal regulation of two structurally related cAMP phosphodiesterases from rat sertoli cell.J. Biol. Chem. 266, 18,370–18,377.

    CAS  Google Scholar 

  30. Engels, P., Fichtel, K., and Lubbert, H. (1994) Expression and regulation of human and rat phosphodiesterase type IV isogene.FEBS Lett. 350, 291–295.

    Article  PubMed  CAS  Google Scholar 

  31. Engels, P., Abdel'Al, S., Hulley, P., and Lubbert, H. (1995) Brain distribution of four rat homologues of the drosphila dunce phosphodiesterase.J. Neurosci. Res. 41, 169–178.

    Article  PubMed  CAS  Google Scholar 

  32. Lobban, M., Shakur, Y., Beattie, J., and Houslay, M. D. (1994). Identification of two splice variant forms of type IVb cyclic AMP phosphodiesterase, DPD (rPDE-IVb1 and PDE-4(rPDE-IVB2 in brain: selective localisation in membrane and cytosolic compartments and differential expression in various brain regions.Biochem. J. 304, 399–406.

    PubMed  CAS  Google Scholar 

  33. Shakur, Y., Pryde, J. G., and Houslay, M. D. (1993) Engineered deletion of the unique N-terminal domain of the cyclic AMP-specific phosphodiesterase RD1 prevents plasma membrane association and the attainment of enhanced thermostability without altering its sensitivity to inhibition by rolipram.Biochem. J. 292, 677–686.

    PubMed  CAS  Google Scholar 

  34. Michie, A. M., Lobban, M. D., Mueller, T., and Harnett, M. M., Houslay, M. D. (1996) Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and rolipram.Cell. Signalling 8, 97–110.

    Article  PubMed  CAS  Google Scholar 

  35. June, C. H., Fletcher, M. C., Ledbetter, J. A., and Samelson, L. E. (1990) Increases in tyrosine phosphorylation are detectable before phospholiase C activation after T cell receptor stimulation.J. Immunol. 144, 1591–1599.

    PubMed  CAS  Google Scholar 

  36. Siegel, J. N., Klausner, R. D., Rapp, U. R., and Samelson, L. E. (1990) T cell antigen receptor engagement stimulates c-raf phosphorylation and induces c-raf-associated kinase activity via a protein kinase C-dependent pathway.J. Biol. Chem. 265, 18,472–18,480

    CAS  Google Scholar 

  37. Weiss, A. and Littman, D. R. (1994) Signal transduction by lymphocyte antigen receptors.Cell 76, 263–274.

    Article  PubMed  CAS  Google Scholar 

  38. Rudd, C. E., Janssen, O., Cai, Y.-C., da Silva, A. J., and Raab, M., et al. (1994) Two step TCRζ/CD3-CD4 and CD28 signalling in T cells: SH2/SH3 domains. protein tyrosine and lipid kinases.Immunol. Today 15, 225–234.

    Article  PubMed  CAS  Google Scholar 

  39. Downward, J., Graves, J., and Cantrell, D. (1992) The regulation and function of p21ras in T cells.Immunol. Today 13, 89–92.

    Article  PubMed  CAS  Google Scholar 

  40. Nel, A. E., Ledbetter, J. A., Ho, P., Akerley, B., Franklin, K., et al. (1991) Activation of MAP-2 kinase activity by the CD2 receptor in Jurkat T cells can be reversed by CD45 phosphatase.Immunology 73, 129–133.

    PubMed  CAS  Google Scholar 

  41. Phillips, R. J., Harnett, M. M., and Klaus, G. G. (1991) Antigen receptor-mediated phosphoinositide hydrolysis in murine T cells is not initiated via G-protein activation.Int. Immunol. 3, 617–621.

    Article  PubMed  CAS  Google Scholar 

  42. Sancho, J., Silverman, L. B., Castigli, E., Ahern, D., and Laudano, A. P., et al. (1992) Developmental regulation of transmembrane signalling via the T cell antigen receptor/CD3 complex in human T lymphocytes.J. Immunol. 148, 1315–1321.

    PubMed  CAS  Google Scholar 

  43. Harnett, M. M., Holman, M. J., and Klaus, G. G. B. (1991), IL-4 promotes anti-Ig-mediated protein kinase C translocation and reverses phorbol ester-mediated protein kinase C regulation in murine B cells.J. Immunol. 147, 3831–3836.

    PubMed  CAS  Google Scholar 

  44. Thompson, W. J. and Appleman, M. M. (1971) Multiple cyclic nucleotide phosphodiesterase activities in rat brain.Biochemistry 10, 311–316.

    Article  PubMed  CAS  Google Scholar 

  45. Rutten, W. J., Shoot, B. M., and De Pont, J. J. H. H. M. (1973) Adenosine 3′,5′-monophosphate phosphodiesterase assay in tissue homogenates.Biochim. Biophys. Acta 315, 378–383.

    CAS  Google Scholar 

  46. Marchmont, R. J. and Houslay, M. D. (1980) A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes.Biochem. J. 187, 381–392.

    PubMed  CAS  Google Scholar 

  47. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  48. Heyworth, C. M., Wallace, A. V., and Houslay, M. D. (1983) Insulin and glucagon regulate the activation of two distinct membrane-bound cyclic AMP phosphodiesterases in hepatocytes.Biochem. J. 214, 99–110.

    PubMed  CAS  Google Scholar 

  49. Savage, A., Zeng, L. and Houslay, M. D. (1995) A role for protein kinase C-mediated phosphorylation in eliciting glucagon desensitization in rat hepatocytes.Bio. J. 307, 281–285.

    CAS  Google Scholar 

  50. Zeng, L. and Houslay, M. D. (1995) Insulin and vasopressin, elicit inhibition of cholera-toxin-stimulated adenylate, cyclase activity in both hepatocytes and the P9 immortalized hepatocyte cell line through an action involving protein kinase C.Biochem. J. 312, 769–774.

    PubMed  CAS  Google Scholar 

  51. Spence, S. and Houslay, M. D. (1989) The local anaesthetic benzl alcohol attenuates the a2-adrenoceptor-mediated inhibition of human platelet adenylyl cyclase activity when stimulated by prostaglandin E1, but not that stimulated by forskolin.Biochem. J. 264, 483–488.

    PubMed  CAS  Google Scholar 

  52. Luo, Z., Shafit-Zagardo, B., and Erlichman, J. (1990) Indentification of the MAP-2 and P75-binding domain in the regulatory subunit of RII cAMP dependent protein kinase.J. Biol. Chem. 265, 21,804–21,810.

    CAS  Google Scholar 

  53. Herbert, J. M., Augereau, J. M., Gleye, J., and Maffrand, J. P. (1990) Chelerythrine is a potent and specific inhibitor of protein kinase C.Biochem. Biophys. Res. Commun. 172, 993–999.

    Article  PubMed  CAS  Google Scholar 

  54. Chijiwa, T., Mishima, A., Hagiwara, M., Sano, M., and Hayashi, K., et al. (1990) Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesised inhibitor of cyclic AMP dependent protein kinase, H89, in PC12D Pheochromocytoma cells.J. Biol. Chem. 265, 5267–5272.

    PubMed  CAS  Google Scholar 

  55. Bialojan, C. and Takai, A. (1988) Inhibitor effect of a marine-sponge toxin okadaic acid, on protein phosphatases.Biochem. J. 256, 283–290.

    PubMed  CAS  Google Scholar 

  56. Lyall, R. M., Zilberstein, A., Gazit, A., Gilon, C., Levitzki, A., et al. (1989) Tyrophostins inhibit epidermal growth factor (EGF) receptor tyrosine kinase activity in living cells and EGF0stimulated cell proliferation.J. Biol. Chem. 264, 14,503.

    CAS  Google Scholar 

  57. Margolis, B., Rhee, S. G., Felder, S., Mervic, M., Lyall, R., et al. (1989) EGF induces tyrosine phosphorylation of phospholipase C-II: A potential mechanism for EGF receptor signalling.Cell 57, 1101–1107.

    Article  PubMed  CAS  Google Scholar 

  58. Ohno, S., Mizuna, K., Adachi, Y., Hata, A., Akita, Y., et al. (1994) Activation of novel protein kinase C upon mitogenic stimulation of quiescent rat 3Y1 fibroblasts.J. Biol. Chem. 269, 17,495–17,501.

    CAS  Google Scholar 

  59. June, C. H., Fletcher, M. C., Ledbetter, J. A., Schieven, G. L., Siegel, J. N., et al. (1990) Inhibition of tyrosone phosphorylation prevents T-cell receptor-mediated signal transduction.Proc. Natl. Acad. Sci. USA 87, 7722–7726.

    Article  PubMed  CAS  Google Scholar 

  60. Greenberg, M. E. and Ziff, E. B. (1984) Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene.Nature 311, 433–438.

    Article  PubMed  CAS  Google Scholar 

  61. Hata, A., Akita, Y., Suzuki, K., and Ohno, S. (1993) Functional divergence of protein kinase C family members.J. Biol. Chem. 268, 9122–9129.

    PubMed  CAS  Google Scholar 

  62. Spence, S., Rena, G., Sweeney, G., and Houslay, M. D. (1995) Induction of Ca2+/calmodulin-stimulated cyclic AMP phosphodiesterase (PDE-1) activity in Chinese hamster ovary cells (CHO) by phorbol 12-myristate 13-acetate and by the selective overexpression of protein kinase C isoforms.Biochem. J. 310, 975–982.

    PubMed  CAS  Google Scholar 

  63. Spence, S., Rena, G., Sullivan, M., Erdogan, S., and Houslay, M. D. (1997) Receptor-mediated stimulation of protein kinase C in CHO cells elicits the rapid transient induction of the PDE-1B isoform of calcium/calmodulin-stimulated phosphodiesterase.Biochem. J. 321, 157–163.

    PubMed  CAS  Google Scholar 

  64. Pooley, L., Shakur, Y., Rena, G., and Houslay, M. D. (1997) Intracellular localisation of the PDE-4A cAMP-specific phosphodiesterase splice variant RD1 (RNPDE-4A1A) in transfected human thyroid carcinoma FTC cell lines.Biochem. J. 271, 177–185.

    Google Scholar 

  65. McPhee, I., Pooley, L., Lobban, M., Bolger, G., and Houslay, M. D. (1995) Identification, characterisation and regional distribution in brain of RPDE-6 (RNPDE-4A5), a novel splice variant of the PDE-4A cyclic AMP phosphodiestase family.Biochem. J. 310, 965–974.

    PubMed  CAS  Google Scholar 

  66. O'Connell, J. C., McCallum, J. F., McPhee, I., Bolger, G., and Frame, M., et al. (1996) The cyclic AMP phosphodiesterase RPDE-6 (RNPDE-4A5) binds to the SH3 domain of v-src through its N-terminal splice region.Biochem. J. 318, 255–262.

    PubMed  Google Scholar 

  67. Cooke, M. P., Abraham, K. M., Forbush, K. A., and Perlmutter, R. M. (1991) Regulation of T cell receptor signalling by a src family protein-tyrosine kinase (p59 fyn).Cell 65, 281–291.

    Article  PubMed  CAS  Google Scholar 

  68. Duplay, P., Thome, M., Herve, F., and Acuto, O. (1994) p56lck via its src homology 2 (SH2) domain with the ZAP-70 kinase.J. Exp. Med. 179, 1163–1172.

    Article  PubMed  CAS  Google Scholar 

  69. Mustelin, T. and Burn, P. (1993) Regulation ofsrc family tyrosine kinases in lymphocytes.TIBS 18, 215–220.

    PubMed  CAS  Google Scholar 

  70. Okada, M., Nada, S., Yamanashi, N. Y., Yamamoto, T., and Nakagawa, H. (1991) CSK: a protein-tyrosine kinase involved in the regulation of src family kinases.J. Biol. Chem. 266, 24,249–24,252.

    CAS  Google Scholar 

  71. Shaw, A. and Thomas, M. L. (1991) Coordinate interactions of protein tyrosine kinases and protein tyrosine phosphatases in T-cell receptor-mediated signalling.Curr. Opinion Cell. Biol. 3, 862–868.

    Article  PubMed  CAS  Google Scholar 

  72. Weiss, A., Koretzky, G., Schatzman, R. C., and Kadlecek, T. (1991) Functional activation of the T-cell antigen receptor induces tyrosine phosphorylation of phospholipase C-gamma 1.Proc. Natl. Acad. Sci. USA 88, 5484–5488.

    Article  PubMed  CAS  Google Scholar 

  73. Abraham, K. M., Levin, S. D., Marth, J. D., Forbush, K. A., and Perlmutter, R. M. (1991) Thymic tumorigenesis induced by over-expression of p56lck.Proc. Natl. Acad. Sci. USA 88, 3977–3981.

    Article  PubMed  CAS  Google Scholar 

  74. Houslay, M. D. and Milligan, G. (1997) Tailoring cAMP signalling responses through isoform multiplicity.Trends in Biochem. Sc. 22, 217–224.

    Article  CAS  Google Scholar 

  75. Scott, J. D. and McCartney, S. (1994) Localization of A-kinase through anchoring proteins.Mol. Endocrinol. 8, 5–11.

    Article  PubMed  CAS  Google Scholar 

  76. Scott, J. D. and Carr, D. W. (1992) Subcellular localisation of type II cAMP-dependent protein kinase.NIPS 7, 143–148.

    CAS  Google Scholar 

  77. Sette, C., Vincini, E., and Conti, M. (1994) The rat PDE-3/IVD phosphodiesterase gene codes for multiple proteins differentially activated by cAMP-dependent protein kinase.J. Biol. Chem. 269, 18,271–18,274.

    CAS  Google Scholar 

  78. Cook, S. J. and McCormick, F. (1993) Inhibition by cAMP of ras-dependent activation of Raf.Science 262, 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  79. Hafner, S., Adler, H. S., Mischak, H., Janosch, P., Heidecker, G., et al. (1994) Mechanism of inhibition of Raf-1 by protein kinase A.Mol. Cell. Biol. 14, 6696–703.

    PubMed  CAS  Google Scholar 

  80. Gupta, S., Weiss, A., Kumar, G., Wang, S., and Nel, A. (1994) The T cell antigen receptor utilises lck, raf-1, MEK-1 for activating mitogen-activated protein kinase.J. Biol. Chem. 269, 17,349–17,357.

    CAS  Google Scholar 

  81. Wu, J., Dent, P., Jelinek, T., Wolfman, A., Weber, M. J., et al. (1993) Inhibition Of the EGF-Activated MAP Kinase Signaling Pathway By Adenosine-3′,5′-Monophosphate.Science 262, 1065–1069.

    Article  PubMed  CAS  Google Scholar 

  82. Loh, C., Romeo, C., Seed, B., Bruder, J. T., Rapp, U., et al. (1994) Association of raf with the CD3 d and g chains of the T cell receptor-CD3 complex.J. Biol. Chem. 269, 8817–8825.

    PubMed  CAS  Google Scholar 

  83. Skalhegg, B. S., Tasken, K., Hansson, V., Huitfeldt, H. S., Jahnsen, T., et al. (1994) Location of cAMP-dependent protein kinase type I with the TCR-CD3 complex.Science 263, 84–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miles D. Houslay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michie, A.M., Rena, G., Harnett, M.M. et al. Upregulation of cAMP-specific PDE-4 activity following ligation of the TCR complex on thymocytes is blocked by selective inhibitors of protein kinase C and tyrosyl kinases. Cell Biochem Biophys 28, 161–185 (1998). https://doi.org/10.1007/BF02737810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737810

Index Entries

Navigation