Skip to main content
Log in

Pulmonary diseases other than asthma as potential targets for antileukotriene therapy

  • Clinical Sciences
  • The Immunobiology of Leukotriene Inhibitors
  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Conclusion

A highly plausible rationale exists for implicating LTs in the pathogenesis of all the diseases considered in this discussion. In general, the weakest link is the paucity of therapeutic trials in humans. It is only recently that pharmacologic agents with acceptable potency and specificity have been available. As experience and comfort with these new anti-LT agents grow, it is anticipated that their application will be extended beyond asthma to the diseases discussed herein. For most of these diseases, a case can be made for the involvement of not only cysteinyl LTs, but also of LTB4 and 5-HETE. For this reason, it can be hypothesized that drugs that inhibit 5-LO metabolism at a proximal step (i.e., 5-LO or 5-LO activating protein) would appear to hold the most promise and versatility. It is hoped that the opportunity to test this hypothesis will be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin T, Raugi G, Merritt T, Henderson W Jr. Relative contribution of leukotriene B4 to the neutrophil chemotactic activity produced by the resident human alveolar macrophage. J Clin Invest 1987;80:1114–1124.

    PubMed  CAS  Google Scholar 

  2. Turnbull L, Turnbull L, Crofton J, Kay A. Variations in chemical mediators of hypersensitivity in the sputum of chronic bronchitics:correlation with peak expiratory flow. Lancet 1978;2:184–186.

    Article  PubMed  CAS  Google Scholar 

  3. O’Driscoll B, Cromwell W, Kay A. Sputum leukotrienes in obstructive airways disease. Clin Exp Immunol 1984;55:397–404.

    PubMed  CAS  Google Scholar 

  4. Zakrzewski J, Barnes N, Costello J, Piper P. Lipid mediators in cystic fibrosis and chronic obstructive pulmonary disease. Am Rev Respir Dis 1987;136:779–782.

    PubMed  CAS  Google Scholar 

  5. Piperno D, Pacheco Y, Hosni R, Moliere P, Gharib C, Lagarde M, Perrin-Fayolle M. Increased plasma levels of atrial natriuretic factor, renin activity, and leukotriene C4 in chronic obstructive pulmonary disease. Chest 1993;104:454–459.

    PubMed  CAS  Google Scholar 

  6. Shindo K, Hirai Y, Fukumura M, Koide K. Plasma levels of leukotriene E4 during clinical course of chronic obstructive pulmonary disease. Prostaglandins 1997;56:213–217.

    CAS  Google Scholar 

  7. Ozaki O, Hayashi H, Tani K, Ogushi F, Yasuoka U, Ogura T. Neutrophil chemotactic factor in the respiratory tract of patients with chronic airway diseases or idiopathic pulmonary fibrosis. Am Rev Respir Dis 1992;145:85–91.

    PubMed  CAS  Google Scholar 

  8. Konstan M, Walenga R, Hilliard K, Hilliard J. Leukotriene B4 markedly elevated in the epithelial lining fluid of patients with cystic fibrosis. Am Rev Respir Dis 1993;148:896–901.

    PubMed  CAS  Google Scholar 

  9. Sampson A, Spencer D, Green C, Piper P, Price J. Leukotrienes in the sputum and urine of cystic fibrosis children. Brit J Clin Pharmacol 1990;30:861–869.

    CAS  Google Scholar 

  10. Greally P, Hussein M, Cook A, Sampson A, Piper P, Price JF. Sputum tumour necrosis factora and leukotriene concentrations in cystic fibrosis. Arch Dis Child 1993;68:389–392.

    PubMed  CAS  Google Scholar 

  11. Spencer D, Sampson A, Green C, Costello J, Piper P, Price J. Sputum cysteinylleukotriene levels correlate with the severity of pulmonary disease in children with cystic fibrosis. Pediatr Pulmonol 1992;12:90–94.

    Article  PubMed  CAS  Google Scholar 

  12. Greally P, Cook A, Sampson A, Coleman R, Chambers S, Piper P, Price J. Atopic children with cystic fibrosis have increased urinary leukotriene E4 concentrations and more severe pulmonary disease. J Allergy Clin Immunol 1994;93:100–107.

    Article  PubMed  CAS  Google Scholar 

  13. Lawrence R, Sorrell T. Eicosapentaenoic acid in cystic fibrosis:evidence of a pathogenetic role for leukotriene B4. Lancet 1993;342:465–469.

    Article  PubMed  CAS  Google Scholar 

  14. Oda H, Kadota J, Kohno S, Hara K. Leukotriene B4 in bronchoalveolar lavage fluid with diffuse panbronchiolitis. Chest 1995;108:115–122.

    Google Scholar 

  15. Seeger W, Grimminger F, Barden M, Becker G, Lohmeyer J, Heinrich D, Lasch H. Omega-oxidized leukotriene B4 deteced in the broncho-alveolar lavage fluid of patients with noncardiogenic pulmonary edema, but not in those with cardiogenic edema. Intensive Care Med 1991;17:1–6.

    Article  PubMed  CAS  Google Scholar 

  16. Antonelli M, Raponi G, Lenti L, Severi L, Capelli O, Riccioni L, De Blasi R, Conti G, Mancini C. Leukotrienes and alpha tumor necrosis factor levels in the bronchoalveolar lavage fluid of patient at risk for the adult, respiratory distress syndrome. Minerva Anestesiol 1994;60:419–426.

    PubMed  CAS  Google Scholar 

  17. Antonelli M, Bufi M, De Blasi R, Crim G, Conti G, Mattia C, Vivino G, Lenti L, Lombardi D, Dotta A, Pontieri G, Gasparetto A. Detection of leukotrienes B4, C4 and of their isomers in arterial, mixed venous blood and bronchoalveolar lavage fluid from ARDS patients. Intensive Care Med 1989;15:296–301.

    PubMed  CAS  Google Scholar 

  18. Stephenson A, Lonigro A, Hyers T, Webster R, Fowler A. Increased concentrations of leukotrienes in bronchoalveolar lavage fluid of patients with ARDS or at risk of ARDS. Am Rev Respir Dis 1988;138:714–719.

    PubMed  CAS  Google Scholar 

  19. Matthay M, Eschenbacher W, Goetzl E. Elevated concentrations of leukotriene D4 in pulmonary edema fluid of patients with the adult respiratory distress syndrome. J Clin Immunol 1984;4:479–483.

    Article  PubMed  CAS  Google Scholar 

  20. Schonfeld W, Knoller J, Joka T, Obertacke U, Konig W. Leukotriene generation in patients with multiple injuries. J Trauma 1992;33:799–806.

    PubMed  CAS  Google Scholar 

  21. Fauler J, Tsikas D, Holch M, Seekamp A, Nerlich M, Sturm J, Frolich J. Enhanced urinary excretion of leukotriene E4 by patients with multiple trauma with or without adult respiratory distress syndrome. Clin Sci 1991;80:497–504.

    PubMed  CAS  Google Scholar 

  22. Bernard G, Korley V, Swindell B, Ford-Hutchinson A, Tagari P. Persistent generation of peptido leukotrienes in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 1991;144:263–267.

    PubMed  CAS  Google Scholar 

  23. Burghardt J, Boros V, Biggs D, Olson D. Lipid mediators in oxygen-induced airway remodeling and hypertension in newborn rats. Am J Respir Crit Care Med 1996;154:837–842.

    PubMed  CAS  Google Scholar 

  24. Taniguchi H, Taki F, Takagi K, Satake T, Sugiyama S, Ozawa T. The role of leukotriene B4 in the genesis of oxygen toxicity in the lung. Am Rev Respir Dis 1986;133:805–808.

    PubMed  CAS  Google Scholar 

  25. Coggeshall J, Christman B, Lefferts P, Serafin W, Blair I, Butterfield M, Snapper J. Effect of inhibition of 5-lipoxygenase metabolism of arachidonic acid on response to endotoxemia in sheep. J Appl Physiol 1998;65:1351–1359.

    Google Scholar 

  26. Fink M, O’Sullivan B, Menconi M, Wollert P, Wang H, Youssef M, Fleisch J. A novel leukotriene B4-receptor antagonist in endotoxin shock: a prospective, controlled trial in a porcine model. Crit Care Med 1993;21:1825–1837.

    Article  PubMed  CAS  Google Scholar 

  27. Wollert, P, Menconi M, O’Sullivan B, Larkin V, Wang H, Larkin V, Fink M. LY255283, a novel leukotriene B4 receptor antagonist, limits activation of neutrophils and prevents acute lung injury induced by endotoxin in pigs. 1993;114:191–198.

    CAS  Google Scholar 

  28. VanderMeer T, Menconi M, O’Sullivan B, Larkin V, Wang H, Sofia M, Fink M. Acute lung injury in endotoxemic pigs role of leukotriene B4. J Appl Physiol 1995;78:1121–1131.

    PubMed  CAS  Google Scholar 

  29. Cohn S, Kruithoff K, Rothschild H, Wang H, Antonsson J, Fink M. Beneficial effects of LY203647, a novel leukotriene C4/D4 antagonist, on pulmonary function and mesenteric perfusion in a porcine model of endotoxic shock and ARDS. Circ Shock 1991;33:7–16.

    PubMed  CAS  Google Scholar 

  30. Wardlaw A, Hay H, Cromwell O, Collins J, Kay A. Leukotrienes, LTC4 and LTB4 in bronchoalveolar lavage in bronchial asthma and other respiratory disseases. J Allergy Clin Immunol 1989;84:19–26.

    Article  PubMed  CAS  Google Scholar 

  31. Wilborn J, Bailie M, Coffey M, Burdick M, Strieter R, Peters-Golden M. Constitutive activation of 5-lipoxygenase in the lungs of patients with idiopathic pulmonary fibrosis. J Clin Invest 1996;97:1827–1836.

    PubMed  CAS  Google Scholar 

  32. Garcia J, Griffith D, Cohen A, Callahan K. Alveolar macrophages from patients with asbestos exposure release increased levels of leuLotriene B4. Am Rev Respir Dis 1989;139:1494–1501.

    PubMed  CAS  Google Scholar 

  33. De Rose V, Trentin L, Crivellari M, Cipriani A, Gialdroni GG, Pozzi E, Folco G, Semenzato G. Release of prostaglandin E2 and leukotriene B4 by alveolar macrophages from patients with sarcoidosis. Thorax 1997;52:76–83.

    Article  PubMed  Google Scholar 

  34. Bachwich P, Lynch J III, Kunkel S. Arachidonic acid metabolism is altered in sarcoid alveolar macrophages. Clin Immunol Immunopathol 1987;42:27–37.

    Article  PubMed  CAS  Google Scholar 

  35. Hackshaw K, Voelkel N, Thomas R, Westcott J. Urine leukotriene E4 levels are elevated in patients with active systemic lupus erythematosus. J Rheumatol 1992;19:252–258.

    PubMed  CAS  Google Scholar 

  36. Hackshaw K, Shi Y, Brandwein S, Jones K, Westcott J. A pilot study of zileuton, a selective 5-lipoxygenase inhibitor in systemic lupus erythematosis. J Rheumatol 1995;22:462–468.

    PubMed  CAS  Google Scholar 

  37. Douglas W, Ryu J, Bjoraker J, Schroeder D, Myers J, Tazelaar H, Swensen S, Scanlon P, Peters S, DeRemee R. Colchicine versus prednisone as treatment of usual interstitial pneumonia. Mayo Clin Proc 1997;72:201–209.

    PubMed  CAS  Google Scholar 

  38. Peters-Golden M, McNish R, Davis J, Blackwood R, Brock T. Colchicine inhibits arachidonate release and 5-lipoxygenase action in alveolar macrophages. Am J Physiol (Lung Cell Mol Physiol) 1996;271:L1004-L1013.

    CAS  Google Scholar 

  39. Phan S, Kunkel S. Inhibition of bleomycin-induced pulmonary fibrosis by nordihydroguiaretic acid. The role of alveolar macrophage activation and mediator production. Am J Pathol 1986;124:343–352.

    PubMed  CAS  Google Scholar 

  40. Ziboh V, Yun M, Hyde D, Giri S. Gamma-linolenic acid-containing diet attenuates bleomycin-induced lung fibrosis in hamsters. Lipids 1997;32:759–767.

    Article  PubMed  CAS  Google Scholar 

  41. Stenmark K, James S, Voelkel N, Toews W, Reeves J, Murphy R. Leukotriene C4 and D4 in neonates with hypoxemia and pulmonary hypertension. New Engl J Med 1983;309:77–80.

    Article  PubMed  CAS  Google Scholar 

  42. Morganroth M, Stenmark K, Morris K, Murphy, R, Mathias M, Reeves J, Voelkel N. Diethylcarbamazine inhibits acute and chronic hypoxic pulmonary hypertension in awake rats. Am Rev Respir Dis 1985;131:488–492.

    PubMed  CAS  Google Scholar 

  43. Voelkel N, Tuder R, Wade K, Hoper M, Lepley R, Goulet J, Koller B, Fitzpatrick F. Inhibition of 5-lipoxygenase-activating protein (FLAP) reduces pulmonary vascular reactivity and pulmonary hypetension in hypoxic rats. J Clin Invest 1996;97:2491–2498.

    PubMed  CAS  Google Scholar 

  44. Tabata T, Ono S, Song C, Noda M, Suzuki S, Tanita T, Fujimura S. Role of leukotriene B4 in monocrotaline-induced pulmonary hypertension. Jap J Thorac Dis 1997;35:160–166.

    CAS  Google Scholar 

  45. Li J, Oliver J, Lu C, Phillips J. Delayed thromboxane or tumor necrosis factor-alpha, but not leukotriene inhibition, attenuates prolonged pulmonary hypertension in endotoxemia. Am J Med Sci 1995;310:103–110.

    Article  PubMed  CAS  Google Scholar 

  46. Smalley W, DuBois R. Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv Pharmacol 1997;39:1–20.

    PubMed  CAS  Google Scholar 

  47. Avis I, Jett M, Boyle T, Vos M, Mood T, Treston A, Martinez A, Muslhine J. Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. J Clin Invest 1996;97:806–813.

    Article  PubMed  CAS  Google Scholar 

  48. Vincent J, Vermeer M, Kort W, Zijlstra F. The formation of thromboxane B2, leukotriene B4 and 12-hydroxyeicosatetraenoic acid by alveolar macrophages after activation during tumor growth in the rat. Biochim Biophys Acta 1990; 1042:255–258.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Peters-Golden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters-Golden, M. Pulmonary diseases other than asthma as potential targets for antileukotriene therapy. Clinic Rev Allerg Immunol 17, 247–260 (1999). https://doi.org/10.1007/BF02737608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737608

Keywords

Navigation