Skip to main content
Log in

Classical and recent formulations for linear elasticity

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

The paper presents a review of the classical formulations for linear elasticity, known as principles in solid mechanics. The analogy between the first variation of the energy functionals and the weak forms is pointed out. Several recent developments in first order system least squares, applied to elasticity are discussed. The paper concludes with a mathematical formulation of a new mixed least squares method and a discussion about its future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amadei B. and Saeb S. (1990), “Constitutive models for rock joints”, InInt. Conf. on Rock Joints. Loen Norway, pages 581–594.

  2. Arnold N. A., Douglas J. and Gupta C. (1984), “A family of higher order mixed finite element methods for plane elasticity”,Numeriche Mathematik,45, 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  3. Atluri S. N., Gallagher R. H. and Zienkiewicz O. C. (1983),Hybrid and Mixed Finite Element Methods, John Wiley, N.Y.

    MATH  Google Scholar 

  4. Babuška I. (1974), “The finite element method with Lagrangian multipliers”,Numeriche Mathematik,20, 179–197.

    Article  Google Scholar 

  5. Bandis S. C. (1990), “Mechanical properties of rock joints”, InInt. Conf. on Rock Joints, Loen Norway, pages 125–140.

  6. Barbosa R. and Ghaboussi J. (1989), “Discrete finite element method”, In Mustoe G.G.W., Henrikson M., and Huttelmaier H-P (Eds.),First US Conference on Discrete Element Methods.

  7. Barton N. and S. C. Bandis. (1990), “Review of predictive capabilities of JRC-JCS model in engineering practice”, InInt. Conf. on Rock Joints, Loen Norway, pages 125–140.

  8. Barton, N. and Choubey V. (1977), “The shear strength of rock joints in theory and practice”, InRock Mechanics, Volume10, pages 1–54.

  9. boresi A. P. and P. P. Lynn (1974),Elasticity in Engineering Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  10. Brezzi F. (1974), “On the stabilization of finite element approximation of the saddle-point problems arising from Lagrange multipliers”,RAIRO Ser. Rouge,8, 129–151.

    MathSciNet  Google Scholar 

  11. Brezzi F. and Fortin M. (1991),Mixed and Hybrid Finite Element Methods, Springer Series of Computational Mathematics, Springer-Verlag New York Inc., New York.

    MATH  Google Scholar 

  12. Cai Z., Manteuffel T. and McCormic S. (1995), “First-order system least squares for velocity-vorticity-pressure form of the Stokes equations, with application to linear elasticity”, InETNA, Volume3, pages 150–159.

  13. Cai Z., Manteuffel T., McCormic S. and Parter S. (1995), “First-order system least squares (FOSLS) for planar linear elasticity: Pure traction”, InETNA, Volume3, pages 150–159.

  14. Carev G. F. and Chen Y. (1989), “Convergence studies of least squares finite elements for first order systems”, InComm. Appl. Numer. Meth., Volume5, pages 127–134.

  15. Courant R. and Hilbert D. (1953),Methods of Mathematical Physics, Interscience I, New York.

    Google Scholar 

  16. Cundal P. (1971), “A computer model for simulating progressive large-scale movements in blocky rock systems”, InInt. Symp. Rock Fracture. Nancy.

  17. Cundal P. (1980),UDEC-A Generalized Distinct Element Program for Modelling Jointed Rock, Final Report to European Research Office, US Army Contract DAJA37-79-0548.

  18. Cundal P. (1988), “Formulation of a three dimensional distinct element model”, InInt. J. Rock Mech. Min. Sci.

  19. De Veubeke B. F. (1965), “Displacement and equilibrium models in the finite element method”, InRecent Developments in Numerical and Experimental Methods, O.C. Zienkiewicz and G.S. Holister (Eds.), pages 145–197, John Wiley and Sons.

  20. Franca L. P. (1987),New Mixed Finite Elements, Ph.D. thesis, Stanford University, Stanford.

    Google Scholar 

  21. Franca L. P. and Hughes T. J. R. (1988), “Two classes of mixed finite element methods”, InComp. Meth. Appl. Mech. Engrg., Volume69, pages 89–129, North-Holland. Elsevier Science Publishers B.V.

  22. Fung Y. C. (1965),Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  23. Ghaboussi J. (1992), “Some theoretical and computational aspects of large scale discrete element analysis”,Symposium on Rock Mechanics.

  24. Glowinski R., Rodin E. Y. and Zienkiewicz O. C. (Eds.) (1979),Energy Methods in Finite Element Analysis, John Wiley and Sons, New York.

    MATH  Google Scholar 

  25. Goodman R. E. (1976),Methods of Geological Engineering in Discontinuous Rocks, West Publishing Company, St Paul, Minnesota.

    Google Scholar 

  26. Goodman R. E., Taylor R. L. and Brekke T. L. (1968), “A model for the mechanics of jointed rock”,Soil Mechanics and Foundation Division.

  27. Gurtin M. E. (1984), “The linear theory of elasticity”, InMechanics of Solids, II, C. Truesdell, pages 1–295. Springer-Verlag.

  28. Hellinger E. (1914), “Der allgemeine ansatz der mechanik der kontinua”, InEncyclopadie der Mathematischen Wissenschaften, Volume4, pages 602–694.

  29. Herrmann L. R. (1965), “Elasticity equations for incompressible and nearly incompressible materials by a variational theorem”, InAIAAJ, pages 1896–1900.

  30. Hu H. and Hai-Chang (1955), “On some variational principles in elasticity and plasticity”, InScientia Sinica (Peking), Volume4, pages 34–54.

  31. Hughes T. J. R. (1987),The Finite Element Method, Linear Static and Dynamic Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  32. Jing L. (1990),Numerical Modelling of Jointed Rock Masses by Distinct Element Method for Two-and Tree-dimensional Problems, PhD thesis, Dept. of Civil Engineering, Lulea University of Technology, Sweden.

    Google Scholar 

  33. Kikuchi N. and Oden J. T. (1988),Contact Problems in Elasticity: A study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia.

    MATH  Google Scholar 

  34. Klisinski M., Runesson K. and Sture S. (1991), “Finite element with softening band”,J. Eng. Mech.,117.

  35. Ladanyi B. and Archambault G. (1970), “Simulation of shear behavior of a jointed rock mass”, InProc. 11-th Symp. on Rock Mech., Berkeley, California, pages 105–125.

  36. Ladyzhenskaya O. A. (1969),The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York.

    MATH  Google Scholar 

  37. Lanczos C. (1964),The Variational Principles of Mechanics, The University of Toronto Press, Toronto.

    Google Scholar 

  38. Lekhnitskii S. G. (1963),Theory of an Elasticity of Anisotropic Elastic Body, Holden-Day, San Fransisco.

    Google Scholar 

  39. Morley M. E. (1989), “A family of mixed finite elements for linear elasticity”,Numeriche Mathematik,55, 633–666.

    Article  MATH  MathSciNet  Google Scholar 

  40. Muskhelishvili N.I. (1953),Some Basic Problems of the Mathematical Theory of Elasticity, Moscow.

  41. Mustoe G. G. W. and Williams J. R. (1989),Educational Workshop on Discrete Elements, Colorado School of Mines, Golden.

    Google Scholar 

  42. Novozhilov V. V. (1961),Theory of Elasticity, Pergamon Press, New York.

    MATH  Google Scholar 

  43. Oden J. T. and Carey G. F. (1983),Finite Elements: Mathematical Aspects, Prentice-Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  44. Oden J. T. and Reddy J. N. (1982),Variational Methods in Theoretical Mechanics, Springer-Verlag, New York.

    Google Scholar 

  45. Pehlivanov A. I., Carey G. F., Lazarov R. D. and Chen Y. (1993), “Convergence of least squares finite elements for first order ODE systems”, InComputing, Volume51, pages 111–123.

  46. Pian T. H. H. (1964), “Derivation of element stiffness matrices by assumed stress distributions”, InAIAAJ, Volume2, pages 1333–1336.

  47. Pian T. H. H. and Tong P. (1969), “Basis of finite element methods for solid continua”, InInt. J. Numer. Methods Eng., Volume11, pages 3–28.

  48. Plesha M. E. (1985), “Constitutive modelling of rock joints”,26-th Symposium on Rock Mechanics, pages 387–395.

  49. Punch E. F. and Atluri S. N. (1984), “Development and testing of stable, invariant isoparametric curvilinear 2-d and 3-d hybryd stress elements”, InComp. Meth. Appl. Mech. Eng., Volume47, pages 331–356.

  50. Qui X., Plesha M. E., Huang X. and Haimson B. C. (1989), “An investigation of the mechanics of rock joints—part 2: Analytical investigation”,Int. J. Rock Mech. Min. Sci.,30.

  51. Reddy J. N. (1973),A Mathematical Theory of Complementary-Dual Variational Principles and Mixed Finite Element Approximations of Linear Boundary-Value Problems in Continuum Mechanics, TICAM Report 73-7, The University of Texas at Austin.

  52. Reddy, J. N. (1984),Energy and Variational Methods in Applied Mechanics, John Wiley and Sons, New York.

    MATH  Google Scholar 

  53. Reissner E. (1950), “On a variational theorem in elasticity”, InMath. Phys., Volume29, pages 90–95.

  54. Rubinstein R., Punch E. F. and Atluri S. N. (1983), “An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: Selestion of stable invariant stress fields”, InComp. Meth. Appl. Mech. Eng., Volume38, pages 63–92.

  55. Shi Gen-hua (1989),Discontinuous Deformation Analysis: A New Model for the Statics and Dynamics of Block Systems, PhD thesis, Dept. of Civil Engineering, Univ. of California at Berkeley.

  56. Sokolnikoffi, S. (1956),Mathematical Theory of Elasticity, McGraw-Hill Book Company.

  57. Stenberg R. (1986), “On the construction of optimal mixed finite element methods for the linear elasticity problem”,Numeriche Mathematik,48, 447–462.

    Article  MATH  MathSciNet  Google Scholar 

  58. Strang G. and Fix G. J. (1973),An analysis of the Finite Element Method, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  59. Tchonkova M., Amadei B., Sture S. and Jung J. (1993),Application of Joint Damage Data to Constitutive Modeling Efforts, Report, Department of Civil, Architectural and Environmental Engineering, Boulder, Colorado.

    Google Scholar 

  60. Tchonkova M. and Sture S. (1997), “A mixed least squares method for solving problems in linear elasticity: Formulation and initial results”, InComputational Mechanics, Volume19, pages 317–326.

  61. Tchonkova M. and Sture S. (1998), “On the analogy between some weighted residual methods and the classical variational principles in solid mechanics”, InICES'98, Atlanta.

  62. Tchonkova M. and Sture S. (1999), “Modeling an incompressible behavior of elastic solids via a mixed least squares method”, InFifth USNCCM, Boulder.

  63. Tchonkova M. and Sture S. (2000), “Classical and recent weak formulations for elasticity”, InSubmitted for publication.

  64. Tchonkova M. and Sture S. (2000), “A mixed least squares method for solving problems in linear elasticity: Theoretical investigations”, InSubmitted for publication.

  65. Tchonkova-Parashkevova M. (1998),A New Mixed Least Squares Method for Solving Problems in Linear Elasticity, PhD thesis, University of Colorado at Boulder.

  66. Timoshenko S. P. and Goodier J. N. (1970),Theory of Elasticity, McGraw-Hill, New York.

    MATH  Google Scholar 

  67. Tseng J. and Olson M.D. (1981), “The mixed finite element method applied to two-dimensional elastic contact problems”,Int. J. Num. Meth. Eng.,17, 991–1014.

    Article  MATH  Google Scholar 

  68. Washizu K. (1982),Variational Methods in Elasticity and Plasticity, Pergamon Press, Oxford.

    MATH  Google Scholar 

  69. Xue W. M., Karlovitz L. A. and Atluri S. N. (1985), “Existence and stability conditions for mixed-hybrid finite element solutions based on Reissner's variational principle”, InInt. J. Solids and Struct., Volume21, pages 97–116.

  70. Xue, W. M. and Atluri S. N. (1985), “Existence and stability, and discrete BB and rank conditions, for general mixed-hybrid finite elements in elasticity”, In Spilker R. L. and Reed K. W. (Eds.),Hybrid and Mixed Finite Element Methods, Miami Beach, Florida, The American Society of Mechanical Engineers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchonkova, M., Sture, S. Classical and recent formulations for linear elasticity. ARCO 8, 41–74 (2001). https://doi.org/10.1007/BF02736684

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736684

Keywords

Navigation