Skip to main content
Log in

Subcellular localization of Cd in the root cells ofAllium sativum by electron energy loss spectroscopy

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The ultrastructural investigation of the root cells ofAllium sativum L. exposed to three different concentrations of Cd (100 (AM, 1 μM and 10 mM) for 9 days was carried out. The results showed that Cd induced several significant ultrastructural changes — high vacuolization in cytoplasm, deposition of electron-dense material in vacuoles and nucleoli and increment of disintegrated organelles. Data from electron energy loss spectroscopy (EELS) revealed that Cd was localized in the electron-dense precipitates in the root cells treated with 10 mM Cd. High amounts of Cd were mainly accumulated in the vacuoles and nucleoli of cortical cells in differentiating and mature root tissues. The mechanisms of detoxification and tolerance of Cd are briefly explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barceló J and Poschenrieder C 1999 Structural and ultrastructural changes in heavy metal exposed plants; inHeavy metal stress in plants (eds) M N V Prasad and J Hagemeyer (Berlin Heidelberg: Spinger-Verlag) pp 183–205

    Google Scholar 

  • Bringezu K, Lichtenberger O, Leopold I and Neumann D 1999 Heavy metal tolerance ofSilene vulgaris;J. Plant Physiol. 154 536–546

    CAS  Google Scholar 

  • Chaney R L 1983 Plant uptake of inorganic waste constituents; inLand treatment of hazardous wastes (eds) J F Parr, P B Marsh and J M Kla (Park Ridge: Noyes Data Corporation) pp 50–76

    Google Scholar 

  • Greger M 1999 Metal availability and bioconcentration in plants; inHeavy metal stress in plants (eds) M N V Prasad and J Hagemeyer (Berlin Heidelberg: Spinger-Verlag) pp 1–27

    Google Scholar 

  • Grill E, Winnacker E L and Zenk M H 1987 Phytochelatins, a class of heavy metal binding peptides from plants, are functionally analogous to metallothioneins;Proc. Natl. Acad. Sci. USA 84 439–443

    Article  PubMed  CAS  Google Scholar 

  • Hall J L 2002 Cellular mechanisms for heavy metal detoxification and tolerance;J. Exp. Bot. 53 1–11

    Article  PubMed  CAS  Google Scholar 

  • Huxham I M, Jarvus M C, Shakespeare L, Dover C J, Johnson D, Knox J P and Seymour G B 1999 Electron-energy-loss spectroscopic imaging of calcium and nitrogen in the cell walls of apple fruits;Planta 208 438–443

    Article  CAS  Google Scholar 

  • Irmer U, Wachholz I, Schäfer H and Lorch D W 1986 Influence of lead onChlamydomonas reinhardtii Danegard (Volvocales, Chlorophyta): accumulation, toxicity and ultrastructural changes;Environ. Exp. Bot. 26 97–105

    Article  CAS  Google Scholar 

  • Jiang W S, Liu D H and Hou W Q 2001 Hyperaccumulation of cadmium by roots, bulbs and shoots ofAllium sativum L.;Bioresource Tech. 76 9–13

    Article  CAS  Google Scholar 

  • Kamnev A A and van der Lelie D 2000 Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation;Biosci. Rep. 20 239–258

    Article  PubMed  CAS  Google Scholar 

  • Khan D H, Duckett J G, Frankland B and Kirkham J B 1984 An X-ray microanalytical study of the distribution of cadmium in roots ofZea mays L.;J. Plant Physiol. 115 19–28

    CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao F-J and McGrath S P 2000 Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator;Planta 212 75–84

    Article  PubMed  Google Scholar 

  • Lindsey P A and Lineberger R D 1981 Toxicity, cadmium accumulation and ultrastructural alterations induced by exposure ofPhaseolus seedlings to cadmium;Hortscience 16 434

    Google Scholar 

  • Lockwood M P 1976Effects of pollutants on aquatic organisms (New York: Cambridge University Press)

    Google Scholar 

  • Nassiri Y, Wéry, Mansot J L and Ginsburger-Vogel T 1997a Cadmium bioaccumulation inTetraselmis suecica: an electron energy loss spectroscopy (EELS) study;Arch. Environ. Contam. Toxicol. 33 156–161

    Article  PubMed  CAS  Google Scholar 

  • Nassiri Y, Mansot J L, Wéry J, Ginsburger-Vogel T and Anuard C J 1997b Ultrastructureal and electron energy loss spectroscopy studies of sequestration mechanisms of Cd and Cu in the marine diatonSkeletonema costatum;Arch. Environ. Contam. Toxicol. 33 147–155

    Article  PubMed  CAS  Google Scholar 

  • Neumann D, zur Nieden U, Lichtenberger O and Leopold I 1995 How doesArmeria maritima tolerate high heavy metal concentration?;J. Plant Physiol. 146 704–717

    CAS  Google Scholar 

  • Neumann D, zur Nieden U, Schwieger W, Leopold I and Lichtenberger O 1997 Heavy metal tolerance ofMinuartia erna;J. Plant Physiol. 151 101–108

    CAS  Google Scholar 

  • Rauser W E 1999 Structure and function of metal chelators produced by plants;Cell Biochem. Biophys. 31 19–48

    Article  PubMed  CAS  Google Scholar 

  • Rauser W E and Ackerley C A 1987 Localization of cadmium in granules within differentiating and mature root cells;Can. J. Bot. 65 643–646

    CAS  Google Scholar 

  • Rauser W E and Meuwly P 1995 Retention of cadmium in roots of maize seedlings;Plant Physiol. 109 195–202

    Article  PubMed  CAS  Google Scholar 

  • Salt D E, Prince R C, Pickering I J and Raskin I 1995 Mechanisms of cadmium mobility and accumulation in Indian mustard;Plant Physiol. 109 1427–1433

    PubMed  CAS  Google Scholar 

  • Salt D E and Rauser W E 1995 Mg-ATP-dependent transport of phytochelatins across the tonoplast of oat roots;Plant Physiol. 107 1293–1301

    PubMed  CAS  Google Scholar 

  • Salt D E and Wagner G J 1993 Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity;J. Biol. Chem. 268 12297–12302

    PubMed  CAS  Google Scholar 

  • Salt D E, Blaylock M, Kumar P B A N, Dushenkov V, Ensley B D, Chet I and Raskin I 1996 Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants;Biotechnology 13 468–474

    Google Scholar 

  • Sanità L, di Toppi and Gabbrielli R 1999 Response to cadmium in higher plants;Environ. Exp. Bot. 41 105–130

    Article  Google Scholar 

  • Saxena P K, KrishnaRaj S, Dan T, Perras M R and Vettakkorumakankav N N 1999 Phytoremediation of heavy metal contaminated and polluted soils; inHeavy metal stress in plants (eds) M N V Prasad and J Hagemeyer (Berlin Heidelberg: Spinger-Verlag) pp 305–329

    Google Scholar 

  • Stephan U W and Prochazka Z 1989 Physiological disorders of the nicotianamine-auxotroph tomato mutantchloronerva at different levels of iron nutrition. I. Growth characteristics and physiological abnormalities as related to iron and nicotianamine supply;Acta Bot. Nerrl. 38 147–153

    CAS  Google Scholar 

  • Tomsett A B and Thurman D A 1988 Molecular biology of metal tolerances of plants;Plant Cell Environ. 11 383–394

    Article  CAS  Google Scholar 

  • Tumau K, Kottke I and Dexheimer J 1996 Toxic element filtering inRhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps;Mycol. Res. 100 16–22

    Article  Google Scholar 

  • Vázquez M D, Poschenrieder Ch and Barceló J 1987 Chromium VI induced structural and ultrastructural changes in bush bean plants(Phaseolus vulgaris L.);Ann. Bot. 59 427–438

    Google Scholar 

  • Vázquez M D, Barceló J, Poschenrieder Ch, Mádico J, Hatton P, Baker A J M and Cope G H 1992a Localization of Zinc and Cadmium inThlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals;J. Plant Physiol. 140 350–355

    Google Scholar 

  • Vázquez M D, Poschenrieder Ch and Barceló J 1992b Ultrastructural effects and localization of low cadmium concentrations in bean roots;New Phytol. 120 215–226

    Article  Google Scholar 

  • Zenk M H 1996 Heavy metal detoxification in higher plants — a review;Gene 179 21–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Kottke, I. Subcellular localization of Cd in the root cells ofAllium sativum by electron energy loss spectroscopy. J Biosci 28, 471–478 (2003). https://doi.org/10.1007/BF02705121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705121

Keywords

Navigation