Skip to main content
Log in

Discriminating neutrino mass models using type-II see-saw formula

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

An attempt has been made to discriminate theoretically the three possible patterns of neutrino mass models,viz., degenerate, inverted hierarchical and normal hierachical models, within the framework of Type-II see-saw formula. From detailed numerical analysis we are able to arrive at a conclusion that the inverted hierarchical model with the same CP phase (referred to as Type [IIA]), appears to be most favourable to survive in nature (and hence most stable), with the normal hierarchical model (Type [III]) and inverted hierarchical model with opposite CP phase (Type [IIB]), follow next. The degenerate models (Types [IA,IB,IC]) are found to be most unstable. The neutrino mass matrices which are obtained using the usual canonical see-saw formula (Type I), and which also give almost good predictions of neutrino masses and mixings consistent with the latest neutrino oscillation data, are re-examined in the presence of the left-handed Higgs triplet within the framework of non-canonical see-saw formula (Type II). We then estimate a parameter (the so-called discriminator) which may represent the minimum degree of suppression of the extra term arising from the presence of left-handed Higgs triplet, so as to restore the good predictions on neutrino masses and mixings already acquired in Type-I see-saw model. The neutrino mass model is said to be favourable and hence stable when its canonical see-saw term dominates over the non-canonical (perturbative) term, and this condition is used here as a criterion for discriminating neutrino mass models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Maltoni, T Schwetz, M A Tortola and J W F Valle,New J. Phys. 6, 122 (2004), hep-ph/0405172

    Article  ADS  Google Scholar 

  2. A Yu Smirnov, hep-ph/0402264

  3. G Altarelli and F Feruglio,New J. Phys. 6, 106 (2004), hep-ph/0405048

    Article  ADS  Google Scholar 

  4. John B Bahcall, M C Gonzalez-Garcia and Carlos Pena-Garay,J. High Energy Phys. 0408, 016 (2004), hep-ph/0406294

    Article  ADS  Google Scholar 

  5. A Bandyopadhyay, S Choubey, S Goswami, S T Petcov and D P Roy,Phys. Lett. B608, 115 (2005), hep-ph/0406328

    ADS  Google Scholar 

  6. Carl H Albright,Phys. Lett. B599, 285 (2004), hep-ph/0407155

    ADS  Google Scholar 

  7. D Indumati and M V N Murthy,Phys. Rev. D71, 013001 (2005), hep-ph/0407336

    ADS  Google Scholar 

  8. S Palomares-Ruiz and S T Petcov,Nucl. Phys. B712, 392 (2005), hep-ph/0406096 Raj Gandh, Pomita Ghoshal, S Goswami, P Mehta and S Uma Sankar, hep-ph/ 0506145

    Article  ADS  Google Scholar 

  9. S Choubey and W Rodejohann,Phys. Rev. D72, 033016 (2005), hep-ph/0506102

    ADS  Google Scholar 

  10. Super-Kamiokande Collaboration: S Fukudaet al, Phys. Lett. B539, 179 (2002), hep-ex/9807003

    ADS  Google Scholar 

  11. SNO Collaboration: S N Ahmedet al, Phys. Rev. Lett. 92, 181301 (2004), nuclex/0309004

    Article  ADS  Google Scholar 

  12. Super-Kamiokande Collaboration: Y Fukudaet al, Phys. Rev. Lett. 81, 1562 (1998), hep-ex/9807003

    Article  ADS  Google Scholar 

  13. KamLAND Collaboration: K Eguchiet al, Phys. Rev. Lett. 90, 021802 (2003), hep-ex/0212021

    Article  ADS  Google Scholar 

  14. CHOOZ Collaboration: M Apollonioet al, Phys. Lett. B466, 415 (1999), hep-ex/9907037

    ADS  Google Scholar 

  15. K2K Collaboration: M H Ahnet al, Phys. Rev. Lett. 90, 041801 (2003), hep-ex/0212007

    Article  ADS  Google Scholar 

  16. LSND Collaboration: A Aguilaret al, Phys. Rev. D64, 112007 (2001), hep-ex/0104049

    ADS  Google Scholar 

  17. BooNE Collaboration: E D Zimmerman,Nucl. Phys. Proc. Suppl. 123, 267 (2003), hep-ex/0211039

    Article  ADS  Google Scholar 

  18. WMAP Collaboration: C L Bennettet al, Astrophys. J. Suppl. 148, 1 (2003)

    Article  ADS  Google Scholar 

  19. D N Spergelet al, Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  20. A Kogutet al, Astrophys. J. Suppl. 148, 161 (2003)

    Article  ADS  Google Scholar 

  21. G Hinshawet al, Astrophys. J. Suppl. 148, 135 (2003)

    Article  ADS  Google Scholar 

  22. L Verdeet al, Astrophys. J. Suppl. 148, 195 (2003)

    Article  ADS  Google Scholar 

  23. H V Peiriset al, Astrophys. J. Suppl. 148, 213 (2003)

    Article  ADS  Google Scholar 

  24. S Hannestad,J. Cosmol. Astropart. Phys. 0305, 004 (2003)

    Article  ADS  Google Scholar 

  25. O Elgaroy and O Lahav,J. Cosmol. Astropart. Phys. 0304, 004 (2003)

    Article  ADS  Google Scholar 

  26. S Hannestad,Eur. Phys. J. C33, 5800 (2004), hep-ph/0310220

    Google Scholar 

  27. S Hannestad and G Raffelt,J. Cosmol. Astropart. Phys. 0404, 008 (2004), hep-ph/0312154

    Article  ADS  Google Scholar 

  28. The Heidelberg-Moscow Collaboration: H V Klapdor-Kleingrothauset al, Euro. Phys. J. A12, 147 (2001)

    ADS  Google Scholar 

  29. C E Aalsethet al, Phys. Rev. D65, 092007 (2002), hep-ex/0202026

    ADS  Google Scholar 

  30. S M Bilenky, hep-ph/0403245

  31. H V Klapdor-Kleingrothauset al, Mod. Phys. Lett. A37, 2409 (2001)

    ADS  Google Scholar 

  32. H V Klapdor-Kleingrothaus, A Dietz and I V Krivoshena,Phys. Lett. B586, 198 (2004)

    ADS  Google Scholar 

  33. In order to avoid possible confusion in nomenclature, types of neutrino mass models are denoted inside the square bracket e.g., Type [III], whereas types of see-saw formula are expressed without square bracket, e.g., Type I

  34. G Altarelli and F Feruglio,Phys. Rep. 320, 295 (1999), hep-ph/9905536

    Article  ADS  Google Scholar 

  35. M Gell-Mann, P Ramond and R Slansky, in: Supergravity,Proceedings of the Worshop, Stony Brook, New York, 1979, edited by P van Nieueenhuizen and D Freedman (North-Holland, Amsterdam, 1979)

    Google Scholar 

  36. T Yanagida,KEK Lectures 1979 (unpublished)

  37. R N Mohapatra and G Senjanovic,Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  38. R N Mohapatra and G Senjanovic,Phys. Rev. D23, 165 (1981)

    ADS  Google Scholar 

  39. G Lazarides, Q Shafi and C Wetterich,Nucl. Phys. B181, 287 (1981)

    Article  ADS  Google Scholar 

  40. C Watterich,Nucl. Phys. B187, 343 (1981)

    Article  ADS  Google Scholar 

  41. B Brahmachari and R N Mohapatra,Phys. Rev. D58, 015001 (1998)

    ADS  Google Scholar 

  42. R N Mohapatra,Nucl. Phys. Proc. Suppl. 138, 257 (2005), hep-ph/0402035

    Article  ADS  Google Scholar 

  43. Wei-Min Yang and Zhi-Gang Wang,Nucl. Phys. B707, 87 (2005), hep-ph/0406221 S Antush and S F King, hep-ph/0405093 Werner Rodejohann, hep-ph/0403236

    Article  ADS  Google Scholar 

  44. Borut Bajc, Goran Senjanovic and Francesco Vissani,Phys. Rev. D70, 093002 (2004), hep-ph/0402140

    ADS  Google Scholar 

  45. Stefano Bertolini, Michell Frigerio and Michal Malinsky,Phys. Rev. D70, 095002 (2004), hep-ph/0406117

    ADS  Google Scholar 

  46. Thomas Hambye and Goran Senjanovic,Phys. Lett. B582, 73 (2004)

    ADS  Google Scholar 

  47. Narendra Sahu and S Uma Sankar,Phys. Rev. D71, 013006 (2005), hep-ph/0406065

    ADS  Google Scholar 

  48. Bhaskar Dutta, Yukihiro Mimura and R N Mohapatra,Phys. Lett. B603, 35 (2004), hep-ph/0406262

    ADS  Google Scholar 

  49. Type-III see-saw formula [21] involves introducing in addition to left- and right-handed neutrinos, three SO(10) singlet neutrinos. As a consequence, a mass term for a singlet field can effectively lead to a Majorana mass matrix for right-handed neutrinos, which finally gives to the left-handed Majorana mass term

  50. Carl H Albright and S M Barr,Phys. Rev. D70, 033013 (2004), hep-ph/0404095

    ADS  Google Scholar 

  51. S M Barr,Phys. Rev. Lett. 92, 101601 (2004), hep-ph/0309152

    Article  ADS  Google Scholar 

  52. A S Joshipura, E A Paschos and W Rodejohann,J. High Energy Phys. 0108, 029 (2001), hep-ph/0105175

    Article  ADS  Google Scholar 

  53. Nucl. Phys. B611, 227 (2001), hep-ph/0104228

  54. In some papersvu ~ 250 GeV is taken in place ofMW. We prefer here to take ~82 GeV as it is nearer to our input value of eithermt = 82.43 GeV or tan Β = 1.3 x 40 GeV in the text. In this way, both the terms of the Type-II see-saw formula have almost same value of weak scale. However, taking different values does not alter the conclusion of our analysis

  55. R N Mohapatra,Nucl. Phys. Proc. Suppl. 138, 257 (2005), hep-ph/0402035; hep-ph/0306016

    Article  ADS  Google Scholar 

  56. B Bajc, G Senjanovic and F Vissani, hep-ph/0402140

  57. S Antusch and S F King,Nucl. Phys. B705, 239 (2005), hep-ph/0402121

    Article  ADS  Google Scholar 

  58. S Antusch and S F King,Phys. Lett. B597, 199 (2004), hep-ph/0405093

    ADS  Google Scholar 

  59. W Rodejohann,Phys. Rev. D70, 073010 (2004), hep-ph/0403236

    ADS  Google Scholar 

  60. T Hambye and G Senjanovic,Phys. Lett. B582, 73 (2004), hep-ph/0307237

    ADS  Google Scholar 

  61. P O’Donnell and U Sarkar,Phys. Rev. D49, 2118 (1994)

    ADS  Google Scholar 

  62. K A Babu, B Dutta and R N Mohapatra,Phys. Rev. D67, 076006 (2003), hep-ph/0211068

    ADS  Google Scholar 

  63. Ernest Ma,Phys. Rev. D69, 011301 (2004), hep-ph/0308092

    ADS  Google Scholar 

  64. Utpal Sarkar,Phys. Lett. B594, 308 (2004), hep-ph/0403276

    ADS  Google Scholar 

  65. M K Parida, B Purkayastha, C R Das and B D Cajee,Eur. Phys. J. C28, 353 (2003), hep-ph/0210270

    ADS  Google Scholar 

  66. B Bajc, G Senjanovic and F Vissani,Phys. Rev. Lett. 90, 051802 (2003)

    Article  ADS  Google Scholar 

  67. A Melfo and G Senjanovic,Phys. Rev. D68, 03501 (2003)

    Google Scholar 

  68. N Nimai Singh and M Patgiri,Int. J. Mod. Phys. A17, 3629 (2002)

    ADS  Google Scholar 

  69. M Patgiri and N Nimai Singh,Indian J. Phys. A76, 423 (2002)

    Google Scholar 

  70. M Patgiri and N Nimai Singh,Int. J. Mod. Phys. A18, 443 (2003)

    Google Scholar 

  71. For a discussion, see, I Dorsner and S M Barr,Nucl. Phys. B617, 493 (2001)

    Article  ADS  Google Scholar 

  72. S M Barr and I Dorsner,Nucl. Phys. B585, 79 (2000)

    Article  ADS  Google Scholar 

  73. E Kh Akhmedov, M Frigerio and A Yu Smirnov,J. High Energy Phys. 0309, 021 (2003), hep-ph/0305322

    Article  ADS  Google Scholar 

  74. D Falcone,Phys. Lett. B479, 1 (2000), hep-ph/0204335

    ADS  Google Scholar 

  75. This is also true for any diagonal mLR with any arbitrary pair of (m,n). A corresponding Mrr can be found out in principle

  76. H Murayama,Int. J. Mod. Phys. A17, 3403 (2002), hep-ph/02010022

    ADS  Google Scholar 

  77. A de Gouvea, A Friedland and H Murayama,Phys. Lett. B490, 125 (2000)

    ADS  Google Scholar 

  78. M Patgiri and N Nimai Singh,Phys. Lett. B567, 69 (2003)

    ADS  Google Scholar 

  79. S F King and N Nimai Singh,Nucl. Phys. B596, 81 (2001)

    Article  ADS  Google Scholar 

  80. S F King and N Nimai Singh,Nucl. Phys. B591, 3 (2000)

    Article  ADS  Google Scholar 

  81. Mrinal Kumar Das, Mahadev Patgiri and N Nimai Singh,Pramana J. Phys. 65, 995 (2005), hep-ph/0407185

    ADS  Google Scholar 

  82. K S Babu and S M Barr,Phys. Rev. Lett. 85, 1170 (2000)

    Article  ADS  Google Scholar 

  83. H Murayama and C Pena-Garay,Phys. Rev. D69, 031301 (2004), hep-ph/0309114

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N.N., Patgiri, M. & Das, M.K. Discriminating neutrino mass models using type-II see-saw formula. Pramana - J Phys 66, 361–375 (2006). https://doi.org/10.1007/BF02704390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704390

Keywords

PACS Nos

Navigation