Skip to main content
Log in

Finite element prediction of high cycle fatigue life of aluminum alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A new method is described for calculating the long fatigue life (>105 cycles) portion of the stress-life (S-N) fatigue curve for precipitation-hardened aluminum alloys. It is based upon a finite element model of the deformation of a persistent slipband (PSB), and the only material parameter required is the ultimate tensile strength (UTS) of the alloy. The stress dependence of the plastic strain at the tip of a PSB is shown to be very pronounced and to closely match that of anS-N fatigue curve. Very good agreement is obtained for 6061-T6, 2014-T6, 2024-T4, and 7075-T6 aluminum, and the fatigue strength (at 108 cycles) is calculated to be 26 pct of the tensile strength of each alloy, in agreement with experimental data. By contrast, the plastic strain at a crack tip has a much weaker stress dependence. Thus, these calculations also confirm that the elongation of a PSB, and not crack growth, is the rate-controlling process in high cycle fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.E. Frost, K.J. Marsh, and L.P. Pook:Metal Fatigue, Clarendon Press, Oxford, 1974, p. 46.

    Google Scholar 

  2. O.H. Basquin:Proc. ASTM, 1910, vol. 10, pp. 625–30.

    Google Scholar 

  3. L.F. Coffin:Trans. ASME, 1954, vol. 76, pp. 931–50.

    CAS  Google Scholar 

  4. S.S. Manson:NACA Tech. Note, 1954, no. 2933.

  5. B. Meier and V. Gerold:3rd Int. Conf. on Fatigue and Fatigue Thresholds, Charlottesville, VA, R.O. Ritchie and E.A. Starke, Jr., eds., Engineering Materials and Advisory Services Ltd., Cradley Heath, Warley, West Midlands, U.K., 1987, pp. 323–32.

    Google Scholar 

  6. A.F. Blom, A. Hedlund, W. Zhao, A. Fathulla, B. Weiss, and R. Stickler:Behavior of Short Fatigue Cracks, K.J. Miller and E.R. de los Rios, eds., Mechanical Engineering Publications Ltd., London, 1986, pp. 37–66.

    Google Scholar 

  7. K.J. Miller, H.J. Mohamed, and E.R. de los Rios:Behavior of Short Fatigue Cracks, K.J. Miller and E.R. de los Rios, eds., Mechanical Engineering Publications Ltd., London, 1986, pp. 491–511.

    Google Scholar 

  8. K.J. Miller:Fundamentals of Deformation and Fracture, IUTAM Eshelby Memorial Symposium, B.A. Bilby, K.J. Miller, and J.R. Willis, eds., Cambridge University Press, Cambridge, England, 1985, pp. 477–500.

    Google Scholar 

  9. W.J. Baxter and P.-C. Wang:Metall. Trans. A, 1988, vol. 19A, pp. 2457–65.

    CAS  Google Scholar 

  10. W.J. Baxter and T.R. McKinney:Metall. Trans. A, 1988, vol. 19A, pp. 83–91.

    CAS  Google Scholar 

  11. O.B. Pedersen, K.V. Rasmussen, and A.T. Winter:Acta Metall., 1982, vol. 30, pp. 57–62.

    Article  CAS  Google Scholar 

  12. J.N. Vincent and L. Remy:Fracture and the Role of Microstructure, Proc. 4th Eur. Conf. on Fracture, Leoben, Austria, K.L. Maurer and F.E. Matzer, eds., Engineering Materials Advisory Services Ltd., Cradley Heath, Warley, West Midlands, U.K., 1982, pp. 353–57.

    Google Scholar 

  13. W. Vogel, M. Wilhelm, and V. Gerold:Acta Metall., 1982, vol. 30, pp. 21–30.

    Article  CAS  Google Scholar 

  14. C.A. Stubbington:Acta Metall., 1964, vol. 12, pp. 931–39.

    Article  CAS  Google Scholar 

  15. P.J.E. Forsyth:Acta Metall., 1963, vol. 11, pp. 703–15.

    Article  Google Scholar 

  16. S.P. Lynch:Fatigue Mechanisms, J.T. Fong, ed., ASTM STP 675, ASTM, Philadelphia, PA, 1979, pp. 174–213.

    Google Scholar 

  17. F.R.N. Nabarro:Theory of Crystal Dislocations, Clarendon Press, Oxford, 1967, p. 301.

    Google Scholar 

  18. Hibbitt, Karlsson and Sorensen, Inc., Providence, RI.

  19. Y. Brechet, F. Louchet, C. Marchionni, and J.L. Verger-Gaugry:Phil. Mag. A, 1987, vol. 56, pp. 353–66.

    Article  CAS  Google Scholar 

  20. K. Differt, U. Essmann, and H. Mughrabi:Phys. Status Solidi A, 1987, vol. 104, pp. 95–106.

    Article  CAS  Google Scholar 

  21. V. Gerold and B. Meier:3rd Int. Conf. on Fatigue and Fatigue Thresholds, Charlottesville, VA, R.O. Ritchie and E.A. Starke, Jr., eds., Engineering Materials and Advisory Services Ltd., Cradley Heath, Warley, West Midlands, U.K., 1987, pp. 1517–40.

    Google Scholar 

  22. M. Clavel and A. Pineau:Mater. Sci. Eng., 1982, vol. 55, pp. 157–71.

    Article  Google Scholar 

  23. C. Lea, S.J. Brett, and R.D. Doherty:Scripta Metall., 1979, vol. 13, pp. 45–50.

    Article  CAS  Google Scholar 

  24. E. Kohler, E. Bischoff, and V. Gerold:Scripta Metall., 1984, vol. 18, pp. 699–702.

    Article  Google Scholar 

  25. F.A. McClintock:Fracture of Solids, D.C. Drucker and J.J. Gilman, eds., Wiley, New York, NY, 1963, pp. 65–102.

    Google Scholar 

  26. B. Tomkins:Phil. Mag., 1968, vol. 18, pp. 1041–66.

    Article  CAS  Google Scholar 

  27. M.F.E. Ibrahim and K.J. Miller:Fatigue Eng. Mater. Struct., 1980, vol. 2, pp. 351–60.

    Article  Google Scholar 

  28. F.M. Howell and J.L. Miller:Proc. ASTM, 1955, vol. 55, pp. 955–68.

    CAS  Google Scholar 

  29. Aluminum, K.R. VanHorn, ed., ASM, Metals Park, OH, 1967, vol. 1, pp. 303–36.

    Google Scholar 

  30. H. Mughrabi, F. Ackerman, and K. Herz:Fatigue Mechanisms, J.T. Fong, ed., ASTM STP 675, ASTM, Philadelphia, PA, 1979, pp. 69–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, W.J., Wang, PC. Finite element prediction of high cycle fatigue life of aluminum alloys. Metall Trans A 21, 1151–1159 (1990). https://doi.org/10.1007/BF02698246

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698246

Keywords

Navigation