Skip to main content
Log in

The dissolution of sphalerite in ferric sulfate media

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dissolution of sphalerite, (Zn,Fe)S, in ferric sulfate media was investigated using closely sized fractions of crushed sphalerite crystals. Linear kinetics were observed, and the rate increased in proportion to the surface area, as the average particle size of the sphalerite decreased. The predominant reaction products are ZnSO4, FeSO4, and elemental sulfur. The leaching rate increases with increasing temperature, and the apparent activation energy is 44 kJ/mol. The relatively high apparent activation energy suggests that the rate is chemically controlled, a conclusion supported by the insensitivity of the rate of the rotation speed that was observed in complementary rotating disk experiments. The rate increases as the 0.3 to 0.4 power of the Fe(SO4)1.5 concentration, and is nearly independent of the pulp density, in the presence of a stoichiometric excess of ferric sulfate. In 0.3 M Fe(SO4)1.5 media, the rate increases with increasing acid concentrations >0.1 M H2SO4, but is insensitive to more dilute acid concentrations. In the absence of ferric ions, the rate increases rapidly with increasing H2SO4 concentrations, and relatively rapid rates are observed in solutions containing >0.5 M H2SO4. The rate decreases with increasing initial concentrations of ZnSO4, MgSO4, or FeSO4 in the ferric sulfate leaching solution, and this emphasizes the importance of maintaining the dissolved iron in a fully oxidized state in a commercial leaching operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Jankola: Hydrometallurgy, 1995, vol. 39, pp. 63–70.

    Article  CAS  Google Scholar 

  2. M. Boissoneault, S. Gagnon, R. Henning, E. Lachance, and M. Vecchiarelli: Hydrometallurgy, 1995, vol. 39, pp. 79–90.

    Article  CAS  Google Scholar 

  3. E. Ozberk, M.J. Collins, M. Makwana, I.M. Masters, R. Pullenberg, and W. Bahl: Hydrometallurgy, 1995, vol. 39, pp. 53–61.

    Article  CAS  Google Scholar 

  4. M.J. Collins, I.M. Masters, E. Ozberk, B.D. Krysa, and G.J. Desroches: in Lead & Zinc ’95, T. Azakami, N. Masuko, J.E. Dutrizac, and E. Ozberk, eds., The Mining and Materials Processing Institute of Japan, Tokyo, 1995, pp. 680–96.

    Google Scholar 

  5. S. Sadykov, R. Kalanchey, M. McConaghy, J. Stiksma, K. Buban, and J. Oftsie: in Pressure Hydrometallurgy 2004, M.J. Collins and V.G. Papangelakis, eds., CIM, Montreal, 2004, pp. 929–47.

    Google Scholar 

  6. T. deNys and F. Terwinghe: in Lead-Zinc ’90, T.S. Mackey and R.D. Prengaman, eds., TMS, Warrendale, PA, 1990, pp. 335–50.

    Google Scholar 

  7. H. Takala: Erzmetall., 1999, vol. 52, pp. 37–42.

    CAS  Google Scholar 

  8. K. Svens, B. Kerstiens, and M. Runkel: Erzmetall., 2003, vol. 56, pp. 94–103.

    CAS  Google Scholar 

  9. L. Lu, H. Xie, L. Li, and B. Zhao: Chinese Patent No. 97,115,032, July 24, 1997.

  10. K. Saruta and N. Ishimori: Japanese Patent Application No. 2000-21143, Jan. 31, 2000.

  11. M. Kanno, Y. Watanabe, K. Saruta, and A. Narumi: European Patent Application No. EP 1,245,686 A2, Jan. 28, 2001.

  12. E. Roche and P. Freeman: Australian Patent No. 769,984, Dec. 13, 2000.

  13. K.R. Buban, M.J. Collins, I.M. Masters, and L.C. Trytten: in Lead-Zinc 2000, J.E. Dutrizac, J.A. Gonzalez, D.M. Henke, S.E. James, and A.H.-J. Siegmund, eds., TMS, Warrendale, PA, 2000, pp. 727–38.

    Google Scholar 

  14. T.M. Hearne, R. Haegele, and R.D. Beck: in Zinc and Lead Processing, J.E. Dutrizac, J.A. Gonzalez, G.L. Bolton, and P. Hancock, eds., CIM, Montreal, 1998, pp. 765–80.

    Google Scholar 

  15. A. Sandstrom and S. Petersson: Hydrometallurgy, 1997, vol. 46, pp. 181–90.

    Article  Google Scholar 

  16. H. Deveci, A. Akcil, and I. Alp: Hydrometallurgy, 2004, vol. 73, pp. 292–303.

    Article  Google Scholar 

  17. G. da Silva: Hydrometallurgy, 2004, vol. 73, pp. 313–24.

    Article  CAS  Google Scholar 

  18. F. Carranza, I. Palencia, and R. Romero: Hydrometallurgy, 1997, vol. 44, pp. 24–42.

    Article  Google Scholar 

  19. J.E. Dutrizac, A.R. Pratt, and T.T. Chen: in Metallurgical and Materials Processing: Principles and Techniques Volume III: Aqueous and Electrochemical Processing, F. Kongoli, K. Itagaki, C. Yamauchi, and H.Y. Sohn, eds., TMS, Warrendale, PA, 2003, pp. 139–62.

    Google Scholar 

  20. I. Palencia Perez and J.E. Dutrizac: Hydrometallurgy, 1991, vol. 26, pp. 211–32.

    Article  CAS  Google Scholar 

  21. J. Lochmann and M. Pedlik: Hydrometallurgy, 1995, vol. 37, pp. 89–96.

    Article  CAS  Google Scholar 

  22. X. Peng, H. Xie, and L. Lu: Nonferrous Met. (China), 2001, vol. 53 (4), pp. 37–40.

    Google Scholar 

  23. H. Markus, S. Fugleberg, D. Valtakari, T. Salmi, D.Y. Murzin, and M. Lahtinen: Hydrometallurgy, 2004, vol. 73, pp. 269–82.

    Article  CAS  Google Scholar 

  24. P.S. Pina, J. Frenay, V.A. Leao, C.A. Silva, and D. Daman: ATB Metall., 2003, vol. 43, pp. 41–48.

    CAS  Google Scholar 

  25. V.G. Levich: Physiochemical Hydrodynamics, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1962.

    Google Scholar 

  26. J.E. Dutrizac and R.J.C. MacDonald: Metall. Trans. B. 1978, vol. 9B, pp. 543–51.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutrizac, J.E. The dissolution of sphalerite in ferric sulfate media. Metall Mater Trans B 37, 161–171 (2006). https://doi.org/10.1007/BF02693145

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02693145

Keywords

Navigation