Skip to main content
Log in

Flt3-ligand plasmid prevents the development of pathophysiological features of chronic asthma in a mouse model

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Airway inflammation and remodeling are primary characteristics of long-standing asthma. A balance between the TH1/TH2 cytokines regulates the accumulation and activation of inflammatory cells, including mast cells and eosinophils. Recently, we demonstrated that pUMVC3-hFLex, an active plasmid, mammalian expression vector for the secretion of Flt3-L, reversed established airway hyperresponsiveness (AHR) in a murine model of acute allergic airway inflammation. The present experiments were undertaken to examine the effect of pUMVC3-hFLex in a chronic model of allergic airway inflammation that was established in Balb/c mice by sensitization and challenge with ovalbumin (OVA). pUMVC3-hFLex or the control plasmid, pUMVC3, were administered by injection into the muscle interior tibialis. Treatment with pUMVC3-hFLex completely reversed established AHR (p<0.05), and this effect continued even after several exposures to the allergen (p<0.05). pUMVC3-hFLex treatment prevented the development of goblet cell hyperplasia and subepithelial fibrosis, and significantly reduced serum levels of IL-4 and IL-5, and increased serum IL-10 levels (p<0.05) with no effect on serum IL-13. Serum IgE or serum total and anti-OVA IgG1 and IgG2a levels did not change. Total BALF cellularity and BALF IL-5 levels were reduced (p<0.05), but there was no significant effect on BALF IL-10 and IL-13. These results suggest that pUMVC3-hFLex treatment can prevent the development of airway remodeling and maintain airway protection in chronic experimental asthma model, and might provide a novel approach for treating chronic asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vignola AM, Kips J, Bousquet J: Tissue remodeling as a feature of persistent asthma. J Allergy Clin Immunol 2000;105:1041.

    Article  PubMed  CAS  Google Scholar 

  2. Beato M, Herrlich P, Schutz G: Steroid hormone receptors: many actors in search of a plot. Cell 1995;83:851.

    Article  PubMed  CAS  Google Scholar 

  3. Barnes PJ, Pedersen S, Busse WW: Efficacy and safety of inhaled corticosteroids. New developments. Am J Respir Crit Care Med 1998;157:S1.

    Google Scholar 

  4. Covar RA, Leung DY, McCormick D, Steelman J, Zeitler P, Spahn JD: Risk factors associated with glucocorticoid-induced adverse effects in children with severe asthma. J Allergy Clin Immunol 2000;106:651.

    Article  PubMed  CAS  Google Scholar 

  5. Adcock IM: Steroid resistance in asthma. Molecular mechanisms. Am J Respir Crit Care Med 1996;154:S58-S61.

    PubMed  CAS  Google Scholar 

  6. Agrawal DK, Hopfenspirger MT, Chavez J, Talmadge JE: Flt3 ligand: a novel cytokine prevents allergic asthma in a mouse model. Int Immunopharmacol 2001;1:2081.

    Article  PubMed  CAS  Google Scholar 

  7. Edwan JH, Perry G, Talmadge JE, Agrawal DK: Flt-3 ligand reverses late allergic response and airway hyper-responsiveness in a mouse model of allergic inflammation. J Immunol 2004;172:5016.

    PubMed  CAS  Google Scholar 

  8. Lyman SD, James L, Johnson L, et al: Cloning of the human homologue of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells. Blood 1994;83:2795.

    PubMed  CAS  Google Scholar 

  9. Hopfenspirger MT, Parr SK, Townley RG, Agrawal DK: Attenuation of allergic airway inflammation and associated pulmonary functions by mycobacterial antigens is independent of IgE in a mouse model of asthma. Allergol Int 2002;51:21.

    Article  CAS  Google Scholar 

  10. Chong BT, Agrawal DK, Romero FA, Townley RG: Measurement of bronchoconstriction using whole-body plethysmograph: comparison of freely moving versus restrained guinea pigs. J Pharmacol Toxicol Methods 1998;39:163.

    Article  PubMed  CAS  Google Scholar 

  11. Hamelmann E, Schwarze J, Takeda K, et al: Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med 1997;156:766.

    PubMed  CAS  Google Scholar 

  12. Dohi M, Tsukamoto S, Nagahori T, et al: Noninvasive system for evaluating the allergen-specific airway response in a murine model of asthma. Lab Invest 1999;79:1559.

    PubMed  CAS  Google Scholar 

  13. Saloga J, Renz H, Lack G, et al: Development and transfer of immediate cutaneous hypersensitivity in mice exposed to aerosolized antigen. J Clin Invest 1993;91:133.

    Article  PubMed  CAS  Google Scholar 

  14. Roche WR, Beasley R, Williams JH, Holgate ST: Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1989;1:520.

    Article  PubMed  CAS  Google Scholar 

  15. Blyth DI, Pedrick MS, Savage TJ, Hessel EM, Fattah D: Lung inflammation and epithelial changes in a murine model of atopic asthma. Am J Respir Cell Mol Biol 1996;14:425.

    PubMed  CAS  Google Scholar 

  16. Brewster CE, Howarth PH, Djukanovic R, Wilson J, Holgate ST, Roche WR: Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 1990;3:507.

    Google Scholar 

  17. Chu HW, Halliday JL, Martin RJ, Leung DY, Szefler SJ, Wenzel SE: Collagen deposition in large airways may not differentiate severe asthma from milder forms of the disease. Am J Respir Crit Care Med 1998;158:1936.

    PubMed  CAS  Google Scholar 

  18. Rankin JA, Picarella DE, Geba GP, et al: Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc Natl Acad Sci USA 1996;93:7821.

    Article  PubMed  CAS  Google Scholar 

  19. Lee JJ, McGarry MP, Farmer SC, et al: Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med 1997;185:2143.

    Article  PubMed  CAS  Google Scholar 

  20. Zhu Z, Homer RJ, Wang Z, et al: Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999;103:779.

    PubMed  CAS  Google Scholar 

  21. Brusselle GG, Kips JC, Tavernier JH, et al: Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy 1994;24:73.

    Article  PubMed  CAS  Google Scholar 

  22. Kips JC, Brusselle GG, Joos GF, et al: Importance of interleukin-4 and interleukin-12 in allergen-induced airway changes in mice. Int Arch Allergy Immunol 1995;107:115.

    Article  PubMed  CAS  Google Scholar 

  23. Gharaee-Kermani M, Nozaki Y, Hatano K, Phan SH: Lung interleukin-4 gene expression in a murine model of bleomycin-induced pulmonary fibrosis. Cytokine 2001;15:138.

    Article  PubMed  CAS  Google Scholar 

  24. Huaux F, Liu T, McGarry B, Ullenbruch M, Phan SH: Dual roles of IL-4 in lung injury and fibrosis. J Immunol 2003;170:2083.

    PubMed  CAS  Google Scholar 

  25. Sempowski GD, Derdak S, Phipps RP: Interleukin-4 and interferon-gamma discordantly reguiate collagen biosynthesis by functionally distinct lung fibroblast subsets. J Cell Physiol 1996;167:290.

    Article  PubMed  CAS  Google Scholar 

  26. Trifilieff A, Fujitani Y, Coyle AJ, Kopf M, Bertrand C: IL-5 deficiency abolishes aspects of airway remodelling in a murine model of lung inflammation. Clin Exp Allergy 2001;31:934.

    Article  PubMed  CAS  Google Scholar 

  27. Blyth DI, Wharton TF, Pedrick MS, Savage TJ, Sanjar S: Airway subepithelial fibrosis in a murine model of atopic asthma: suppression by dexamethasone or anti-interleukin-5 antibody. Am J Respir Cell Mol Biol 2000;23:241.

    PubMed  CAS  Google Scholar 

  28. Flood-Page P, Menzies-Gow A, Phipps S, et al: Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 2003;112:1029.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka H, Komai M, Nagao K, Ishizaki M, et al: Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol 2004;31:62.

    Article  PubMed  CAS  Google Scholar 

  30. Groux H, Bigler M, de Vries JE, Roncarolo MG: Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 1996;184:19.

    Article  PubMed  CAS  Google Scholar 

  31. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH: Induction of tolerance by IL-10-treated dendritic cells. J Immunol 1997;159:4772.

    PubMed  CAS  Google Scholar 

  32. Akbari O, De Kruyff RH, Umetsu DT: Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001;2:725.

    Article  PubMed  CAS  Google Scholar 

  33. Kingsley CI, Karim M, Bushell AR, Wood KJ: CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol 2002;168:1080.

    PubMed  CAS  Google Scholar 

  34. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002;3:135.

    Article  PubMed  CAS  Google Scholar 

  35. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG: A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997;389:737.

    Article  PubMed  CAS  Google Scholar 

  36. Shimura S, Andoh Y, Haraguchi M, Shirato K: Continuity of airway goblet cells and intraluminal mucus in the airways of patients with bronchial asthma. Eur Respir J 1996;9:1395.

    Article  PubMed  CAS  Google Scholar 

  37. Aikawa T, Shimura S, Sasaki H, Ebina M, Takishima T: Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest 1992;101:916.

    PubMed  CAS  Google Scholar 

  38. Carroll N, Elliot J, Morton A, James A: The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis 1993;147:405.

    PubMed  CAS  Google Scholar 

  39. Fahy JV: Remodeling of the airway epithelium in asthma. Am J Respir Crit Care Med 2001;164:S46-S51.

    PubMed  CAS  Google Scholar 

  40. Grunig G, Warnock M, Wakil AE, et al: Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998;282:2261.

    Article  PubMed  CAS  Google Scholar 

  41. Wills-Karp M, Luyimbazi J, Xu X, et al: Interleukin-13: central mediator of allergic asthma. Science 1998;282:2258.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwan, J.H., Agrawal, D.K. Flt3-ligand plasmid prevents the development of pathophysiological features of chronic asthma in a mouse model. Immunol Res 37, 147–159 (2007). https://doi.org/10.1007/BF02685896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685896

Key Words

Navigation