Skip to main content
Log in

Segmentation of depth-EEG seizure signals: Method based on a physiological parameter and comparative study

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The analysis of stereoelectroencephalographic (intracerebral recording) signals provides information on the electrical activity of brain structures implied in epileptic seizures. A simple nonparametric adaptive segmentation method, based on a physiologically relevant parameter, is presented and compared with three methods reported in the literature. The comparative frame allows us to objectively test methods for their performances on the same basis. Results show that the proposed method is robust with respect to the types of change studied and easier to conduct, even if it is less accurate about the estimation of instants of change than another method presented in this study. Signals are segmented throughout the duration of seizures without parameter readjustment and generate instants of change in accordance with those interactively delimited by the clinician.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Appel, U., and A. Brandt. Adaptive sequential segmentation of piecewise stationary time series.Information Sci. 29:27–56, 1983.

    Article  Google Scholar 

  2. Appel, U., and A. Brandt. A comparative study of three sequential time series segmentation algorithms.Sign. Process. 6:45–60, 1984.

    Article  Google Scholar 

  3. Babloyantz, A., and A. Destesche, Non-linear analysis and modelling of cortical activity. In: Mathematics applied to biology and medicine, edited by J. Demongeot and V. Capasso. 1993, pp. 35–48.

  4. Barlow, J. S. Methods of analysis of non-stationary EEG's, with emphasis on segmentation techniques: a comparative review.J. Clin. Neurophysiol. 2:267–304, 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Basseville, M., and A. Benveniste. Detection of abrupt changes in signals and dynamical systems. In: Lectures notes in control and information sciences, vol. 77, edited by M. Thoma and A. Wyner. New York: Springer-Verlag, 1986.

    Google Scholar 

  6. Basseville, M. Detecting changes in signals and systems—a survey.Automatica 24:309–326, 1988.

    Article  Google Scholar 

  7. Basseville, M., and I. V. Nikiforov. Detection of Abrupt Changes: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1993.

    Google Scholar 

  8. Bland, B. H., P. Andersen, T. Ganes, and O. Sveen. Automated analysis of rhythmicity of physiologically identified hippocampal formation neurons.,Exp. Brain Res. 38:205–219, 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Bodenstein, G., and H. M. Praetorius. Feature extraction of the electroencephalogram by adaptive segmentation.Proc. IEEE 65:642–652, 1977.

    Article  Google Scholar 

  10. Borodkin, L. I., and V. V. Mottl. Algorithm for finding the jump times of random process equation parameter.Automation and Remote-Control 6:23–32, 1976.

    Google Scholar 

  11. Carrault, G., J.J. Bellanger, and J.M. Badier. Segmentation vectorielle de signaux EEG.13ème Colloque Gretsi 2:767–770, 1993.

    Google Scholar 

  12. Fenwick, P.B.C., P. Michie, J. Dollimore, and G.W. Fenton. Mathematical simulation of the electroencephalogram using an autoregressive series.Int. J. Biomed. Comput. 2: 281–307, 1971.

    Article  PubMed  CAS  Google Scholar 

  13. Gath, I., and E. Bar-On. Computerized method of scoring of polygraphic sleep recordings.Comp. Prog. Biomed. 11:217–223, 1980.

    Article  CAS  Google Scholar 

  14. Gath, I., and B. Geva. Unsupervised optimal fuzzy clustering.IEEE Trans. Patt. Anal. Mach. Intell. 2:773–781, 1989.

    Article  Google Scholar 

  15. Gersch, W. Spectral analysis of EEGs by autoregressive decomposition of time series.Math. Biosci. 7:205–222, 1970.

    Article  Google Scholar 

  16. Gray, A. H., and J. D. Markel. Distance measures for speech processing.IEEE Trans. Acoustics Speech, Sign. Process. 24:380–391, 1976.

    Article  Google Scholar 

  17. Hinkley, D. V. Inference about the change point from cumulative sum tests.Biometrika 58:509–523, 1971.

    Article  Google Scholar 

  18. Jansen, B. H. Quantitative EEG analysis in renal disease. Clinical applications of computer analysis of EEG and other neurophysiological signals.Handbook EEG Clin. Neurophysiol. 2:239–260, 1987.

    Google Scholar 

  19. Jazaerli, M. S. Contribution à la Décomposition des Algorithmes de Moindres Carrés Vectoriels Normalisés. Application au traitement d'antennes. Rennes, France: Université de Rennes, Ph.D. Thesis, 1987.

    Google Scholar 

  20. Krajca, V., S. Petranek, I. Patakova, and A. Varri. Automatic identification of significant graphoelements in multichannel EEG recordings by adaptive segmentation and fuzzy clustering.Int. J. Biomed. Comp. 28:71–89, 1991.

    Article  CAS  Google Scholar 

  21. Lopes da Silva, F.H., A. Dijk, H. Smith, and L. H. Zetterberg. Automatic detection and pattern recognition of epileptic spikes from surface and depth recording in man. In: Die quantifizierung des elektroenzephalogramms, edited by G. K. Schenk, 1973, pp. 425–436.

  22. Lopes Da Silva, F. H., A. Dijk, and H. Smits. Detection of non-stationarities in EEGs using the autoregressive model—an application to EEGS of epileptics. In: CEAN—computerized EEG analysis, edited by Dolce and Kunkel. Stuttgart: Fischer-Verlag, 1975, pp. 180–199.

    Google Scholar 

  23. Lopes Da Silva, F. H., W. Ten Broeke, K. Van Hulten, and J. G. Lommen. EEG non-stationarities detected by inverse filtering in scalp and cortical recordings of epileptics: statistical analysis and spatial displays. In: Quantitative analytic studies in epilepsy. New York, Raven Press, 1976, pp. 375–388.

    Google Scholar 

  24. Lopes Da Silva, F. H., K. Van Hulten, J. G. Lommen, W. Storm Van Leeuwen, C. W. M. Van Veelen, and W. Vliegenthart. Automatic detection of epileptic foci.Electroenceph. Clin. Neurophysiol. 43:1–13, 1977.

    Article  PubMed  CAS  Google Scholar 

  25. Michael, D., and J. Houchin. Automatic EEG analysis: a segmentation procedure based on the autocorrelation function.Electroenceph. Clin. Neurophysiol. 46:232–235, 1979.

    Article  PubMed  CAS  Google Scholar 

  26. Page, E. S. Continuous inspection schemes.Biometrika 41:100–115, 1954.

    Google Scholar 

  27. Pijn, J. P., J. V. Neerven, A. Noest, and F. H. Lopes da Silva. Chaos or noise in EEG signals; dependence on state and brain site.Electroenceph. Clin Neurophysiol. 79:371–381, 1991.

    Article  PubMed  CAS  Google Scholar 

  28. Praetorius, H. M., G. Bodenstein, and O. D. Creutzfeld. Adaptive segmentation of EEG records: a new approach to automatic EEG analysis.Electroenceph. Clin. Neurophysiol. 42:84–94, 1977.

    Article  PubMed  CAS  Google Scholar 

  29. Rappelsberger, P., and H. Petsche. Spectral analysis of the EEG by means of an autoregression. In: CEAN—computerized EEG analysis, edited by Dolce and Kunkel. Stuttgart: Fischer, 1975, pp. 27–40.

    Google Scholar 

  30. Segen, J., and A. C. Sanderson. Detecting changes in a time series.IEEE Trans. Inf. Theory 2:249–255, 1980.

    Article  Google Scholar 

  31. Stoica, P. Performance evaluation of some methods for off-line detection of changes in autoregressive signals.Sign. Process. 19:301–310, 1990.

    Article  Google Scholar 

  32. Talairach, J., and J. Bancaud. Stereotaxic exploration and therapy in epilepsy. In: Handbook of clinical neurology, the epilepsies, vol. 15, edited by Vinken and Brown, Amsterdam: North Holland, 1974, pp. 758–782.

    Google Scholar 

  33. Varri, A. Digital Processing of Epilepsy. Tampere, Finland: University of Technology, Licentiate Thesis, 1988.

    Google Scholar 

  34. Vozel, B. Etude Comparative d'Algorithmes Récursifs de Détection de Ruptures Spectrales. Nantes, France: Université de Nantes, PhD Thesis 1994.

    Google Scholar 

  35. Wendling, F., J.J. Bellanger, J. M. Badier, and J. L. Coatrieux. Extraction of spatio-temporal signatures from depth EEG seizure signals based on objective matching in warped vectorial observations.IEEE Trans. Biomed. Eng. 43:990–1000, 1996.

    Article  PubMed  CAS  Google Scholar 

  36. Wendling, F. Mise en correspondance d'observations EEG de profondeur pour la reconnaissance de signatures spatiotemporelles dans les crises d'épilepsie. Rennes, France: Université de Rennes, Ph.D. Thesis, 1996.

    Google Scholar 

  37. Willsky, A. S., and H. L. Jones. A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems.IEEE Trans. Autom. Cont. 21:108–112, 1976.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendling, F., Carrault, G. & Badier, J.M. Segmentation of depth-EEG seizure signals: Method based on a physiological parameter and comparative study. Ann Biomed Eng 25, 1026–1039 (1997). https://doi.org/10.1007/BF02684138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684138

Keywords

Navigation