Skip to main content
Log in

Numerical optimization of bolometric infrared detectors including optical loading, amplifier noise, and electrical nonlinearities

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

We present numerical methods for the optimization of bolometric infrared detectors which use current-biased semiconducting thermistors. We extend the analysis of Griffin and Holland to explicitly include both the electric field dependence of the thermistor resistance and amplifier noise. These methods allow the user to design and evaluate an optimized bolometer once such parameters as the optical loading, the heat sink temperature, and the materials for the thermal link and the thermistor have been chosen. Measured parameters which describe the electrical nonlinearities in neutron transmutation doped germanium are presented. The consequences for bolometer optimization of including these effects are illustrated. This program will be made available at the web site http://physics7.berkeley.edu/bolometer.html.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. J. Low, J. Opt. Soc. Am.41, 1300 (1961).

    ADS  Google Scholar 

  2. J. C. Mather, Appl. Opt.23, 584 (1984).

    ADS  Google Scholar 

  3. S. H. Moseley, J. C. Mather and D. McCammon, J. Appl. Phys.56, 1257 (1984).

    Article  ADS  Google Scholar 

  4. P. L. Richards, J. Appl. Phys.76, 1 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. C. Mather, Appl. Opt.23, 3181 (1984).

    ADS  Google Scholar 

  6. J. C. Mather, Appl. Opt.21, 1125 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  7. M. J. Griffin and W. S. Holland, Int. J. of IR and Millimeter Waves9, 861 (1988).

    Article  ADS  Google Scholar 

  8. R. M. Hill, Philos. Mag.24, 1307 (1971).

    Article  ADS  Google Scholar 

  9. M. Pollak and I. Riess, J. Phys. C9, 2339 (1976).

    Article  ADS  Google Scholar 

  10. S. M. Grannan, A. E. Lange, E. E. Haller and J. W. Beeman,Phys. Rev. B 45, 4516 (1992).

    Article  ADS  Google Scholar 

  11. D. Redfield, Adv. Phys.24, 463 (1975).

    Article  ADS  Google Scholar 

  12. Chen Gang, H. D. Koppen, R. W. van der Heijden, A. T. A. M. de Waele and H. M. Gijsman, Solid State Comm.72, 173 (1989).

    Article  ADS  Google Scholar 

  13. T. F. Rosenbaum, K. Andres and G. A. Thomas, Solid State Comm.35, 663 (1980).

    Article  ADS  Google Scholar 

  14. H. Bottger and V. V. Bryksin,Hopping Conduction in Solids (Akademie-Verlag, Berlin, 1985).

    Google Scholar 

  15. S. M. Grannan, Ph.D. Thesis (U. C. Berkeley, 1996; available from University Microfilms in Ann Arbor, Michigan).

  16. B. I. Shklovskii and A. L. Efros,Electronic Properties of Doped Semiconductors (Springer-Verlag, New York, 1984).

    Google Scholar 

  17. E. E. Haller, N. P. Palaio, W. L. Hansen and E. Kreysa, IR Phys.25, 257 (1985).

    Google Scholar 

  18. E. E. Haller, K. M. Itoh, J. W. Beeman, W. L. Hansen and V. I. Ozhogin,SPIE Proc. 2198, 630 (1994).

    Article  ADS  Google Scholar 

  19. E. Silver, S. Labov, F. Goulding, N. Madden, D. Landis, J. Beeman, T. Pfafman, L. Melkonian, I. Millet and Y. Wai, Nucl. Inst. and Methods in Phys. Research Sect. AA277, 657 (1989).

    Article  ADS  Google Scholar 

  20. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling,Numerical Recipes in C (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  21. S. Tanaka, D. Alsop, E. Chang, A. Clappet al., Astrophysical Lett. and Comm.32, 223 (1995).

    ADS  Google Scholar 

  22. A. C. Clapp, M. J. Devlin, J. O. Gundersen, C. A. Hagmannet al., Astrophysical Journal, Letters433, L57 (1994).

    Google Scholar 

  23. M. J. Devlin, A. C. Clapp, J. O. Gundersen, C. A. Hagmannet al., Astrophysical Journal, Letters430, L1 (1994).

    Google Scholar 

  24. S. M. Grannan, P. L. Richards, E. E. Haller and Jeff Beeman (in preparation for submission to Phys. Rev. B).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U. S. Department of Energy under contract DE-AC03-76SF00098.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grannan, S.M., Richards, P.L. & Hase, M.K. Numerical optimization of bolometric infrared detectors including optical loading, amplifier noise, and electrical nonlinearities. Int J Infrared Milli Waves 18, 319–340 (1997). https://doi.org/10.1007/BF02677923

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02677923

Keywords

Navigation