Skip to main content
Log in

Use of the poincare sphere in polarization optics and classical and quantum mechanics. Review

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

The method of the Poincaré sphere, which was proposed by Henri Poincaré in 1891–1892, is a convenient approach to represent polarized light. This method is graphical: each point on the sphere corresponds to a certain polarization state. Apart from the obvious representation of polarized light, the method of the Poincaré sphere permits efficient solution of problems that result from the use of a set of phase plates or a combination of phase plates and ideally homogeneous polarizers. Recently, to calculate the geometric phase (which is often called the Berry phase) in polarization optics and quantum and classical mechanics, the method of the Poincaré sphere has drawn much attention, since it allows us to carry out these calculations very efficiently and intuitively using the solid angle resting, on a closed curve on the Poincaré sphere that corresponds to the change in the state of light polarization or in the state of spin of an elementary particle or its orientation in space from the viewpoint of systems in classical mechanics. The review considers papers on the above problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Poincaré,Theorie mathematique de la lumiere, vol. 2, G. Carre, Paris, 275 (1892).

    Google Scholar 

  2. W. Shurcliff,Polarized Light [Russian translation], Mir., Moscow (1965), p. 264, W. A. Shurcliff,Polarized light, Harvard Univ. Press, Cambridge Massach. (1962), p. 207.

    Google Scholar 

  3. W. A. Shurcliff and S. S. Ballard,Polarized light, Princeton, NY, Van Norstrand (1964).

    Google Scholar 

  4. M. M. Gorshkov,Ellipsometry [in Russian], Sovet-skoe Radio, Moscow (1974), p. 199.

    Google Scholar 

  5. R. Azzam and N. Bashara,Ellipsometry and Polarized light, Oxford: North-Holland Publ. Comp., Amsterdam—NY, (1977).

    Google Scholar 

  6. M. Born and E. Wolf,Principles of Optics, Pergamon Press, Oxford.

  7. G. N. Ramachandran and S. Ramaseshan, “Crystal Optics,” in:Handbuch der Physik,25/1, Springer Verlag, Berlin (1961), p. 1–217.

    Google Scholar 

  8. Physical Dictionary. Vols. 1–5, ONTI, Moscow (1937–1939).

  9. Physical Encyclopedic Dictionary. Vols. 1–5, Sovet-skaya Entsiklopedia, Moscow (1960–1966).

  10. Physical Encyclopedic Dictionary, Sovet-skaya Entsiklopediya, Moscow (1983).

  11. Physical Encyclopedia, Vols. 1–4, Sovet-skaya, Entsiklopediya, Moscow—Bol. Ross. Entsikl. (1988–1994).

  12. V. S. Zapasskii “Light Polarization,” in:Fiz. Entsikl. Vol. 4, Moscow, Bol. Ross. Entsikl. (1994).

    Google Scholar 

  13. H. C. Jerrard,J. Opt Soc. Am.,44, No. 8, 634 (1954).

    ADS  Google Scholar 

  14. R. M. Azzam and N. M. Bashara,J. Opt. Soc. Am.,62, No. 2, 222–229 (1972).

    ADS  Google Scholar 

  15. R. M. Azzam and N. M. Bashara,J. Opt. Soc. Am.,62, No. 3, 336–340 (1972).

    ADS  Google Scholar 

  16. R. M. Azzam and N. M. Bashara,J. Opt. Soc. Am.,62, No. 11, 1252–1257 (1972).

    ADS  Google Scholar 

  17. H. Hurwitz and R. C. Jones,J. Opt. Soc. Am.,31, No. 7, 493–499, (1941).

    ADS  Google Scholar 

  18. M. F. Bokshteyn,Zh. Tekhn. Fiz.,18, No. 5, 673–678 (1948).

    Google Scholar 

  19. M. V. Berry,Proc. R. Soc. London,A392, No. 1802, 45–57 (1984).

    ADS  MATH  MathSciNet  Google Scholar 

  20. S. I. Vinnitskii, V. L. Derbov, V. N. Dubovik, B. L. Markovski, and Yu. P. Stepanovskii,Usp. Fiz. Nauk,160, No. 6, 1–49 (1990).

    Google Scholar 

  21. M. Berry,Phys. Today,43, No. 12, 34–40 (1990)>

    ADS  MathSciNet  Google Scholar 

  22. J. Anandan,Nature,360, No. 6402, 307–313 (1992).

    Article  ADS  MATH  Google Scholar 

  23. D. N. Klyshko,Usp. Fiz. Nauk,163, No. 11, 1–18 (1993).

    Article  Google Scholar 

  24. V. I. Bondarchuk, L. S. Davtyan, and D. A. Korneev,Usp. Fiz. Nauk,166, No. 2, 185–194 (1996).

    Google Scholar 

  25. A. Yu. Ishlinskii,Mechanics of Gyroscopic Systems Izd. Akad. Nauk, SSSR, Moscow (1963), p. 480.

    Google Scholar 

  26. L. Pockels,Lehrbuch der kristalloptik, Leipzig (1906).

  27. L. Chaumont,Comt. Rend.,156, 1604 (1913).

    Google Scholar 

  28. L. Chaumont,Ann. Chim. et Phys. Ser. 9,4, 101 (1915).

    Google Scholar 

  29. H. Bouassi,Optique cristalline double refraction, Paris, (1925), p. 482.

  30. C. A. Skinner,J. Opt. Soc. Am.,10, 491–529 (1925).

    Google Scholar 

  31. J. Becquerel,Com. Phys. Lab. Univ. Leiden, No. 91C, (1928).

  32. J. Becquerel,Com. Phys. Lab. Univ. Leiden, No. 211A, (1930).

  33. F. E. Wright,J. Opt. Soc. Am.,20, 529–564 (1930).

    ADS  Google Scholar 

  34. L. Grillet and H. Bizette,J. Phys. Radium,1, No. 3, 99–120 (1930).

    Google Scholar 

  35. J. Mathieu,J. Phys. Radium,2, No. 6, 189–197 (1931).

    MathSciNet  Google Scholar 

  36. G. Bruhat and P. Grivet,J. Phys. Radium,6, No. 1, 12–26 (1935).

    Google Scholar 

  37. Y. Bjornstahl,Physik. Z.,40, No. 13, 437–443 (1939).

    Google Scholar 

  38. Y. Bjornstahl,Z. Instrumenentk.,59, No. 11, 425–430 (1939).

    Google Scholar 

  39. O. Spellman and Y. Bjornstahl,Kolloid. Beich.,52, 403 (1941).

    Google Scholar 

  40. F. Perrin,J. Chem. Phys.,10, No. 7, 415–427 (1942).

    Article  ADS  Google Scholar 

  41. G. Destriau and J. Proteau,J. Phys Radium,10, No. 2, 53–55 (1949).

    Google Scholar 

  42. G. N. Ramachandran and S. Ramaseshan,Proc. Ind. Acad. Sci.,A41, No. 1, 32 (1951).

    Google Scholar 

  43. G. N. Ramachandran and S. Ramaseshan,J. Opt. Soc. Am.,42, No. 1, 49–56 (1952).

    ADS  Google Scholar 

  44. G. N. Ramachandran and S. Ramaseshan,J. Ind., Instr. Sci.,86, 95 (1955).

    Google Scholar 

  45. M. J. Walker,Am. J. Phys.,22, No. 4, 170–174 (1954).

    Article  MATH  ADS  Google Scholar 

  46. W. H. McMaster,Am. J. Phys.,22, No. 6, 351–362 (1954).

    Article  MATH  ADS  Google Scholar 

  47. G. V. Rosenberg,Usp. Fiz. Nauk,56, No. 1, 77–109 (1955).

    Google Scholar 

  48. S. Pancharatnam,Proc. Ind. Acad. Sci.,A41, 130 (1955).

    Google Scholar 

  49. S. Pancharatnam,Proc. Ind. Acad. Sci.,A42, 86 (1955).

    MATH  Google Scholar 

  50. S. Pancharatnam,Proc. Ind. Acad. Sci.,A42, 235 (1955).

    Google Scholar 

  51. S. Pancharatnam,Proc. Ind. Acad. Sci.,A44, No. 5, 247–262 (1956).

    MathSciNet  Google Scholar 

  52. S. Pancharatnam,Proc. Ind. Acad. Sci.,A44, 398–417 (1956).

    MathSciNet  Google Scholar 

  53. S. Pancharatnam,Proc. Ind. Acad. Sci.,A45, 402 (1957).

    MathSciNet  Google Scholar 

  54. S. Pancharatnam,Proc. Ind. Acad. Sci.,A45, 1 (1957).

    Google Scholar 

  55. S. Pancharatnam,Proc. Ind. Acad. Sci.,A46, 280 (1957).

    MathSciNet  Google Scholar 

  56. S. Pancharatnam,Proc. Ind. Acad. Sci.,A47, 201–209 (1958).

    Google Scholar 

  57. S. Pancharatnam,Proc. Ind. Acad. Sci.,A46, No. 1, 210–229 (1958).

    Google Scholar 

  58. C. J. Koester,J. Opt. Soc. Am.,49, No. 4, 405–409 (1959).

    ADS  Google Scholar 

  59. H. Takasaki,J. Opt. Soc. Am.,51, No. 10, 1146 (1961).

    Google Scholar 

  60. H. Takasaki,J. Opt. Soc. Am.,52, No. 6, 718–719 (1962).

    Google Scholar 

  61. P. Drude,Lehrbuch der Optik, Leipzig (1906), p. 538.

  62. L. C. Martin,An Introduction to Applied Optics. Vol. 1, I. Pitman & sons, London (1930), 324;Vol. 2 (1932), 288.

    Google Scholar 

  63. M. Born,Optic, Springer Verlag, Berlin (1933), 591.

    Google Scholar 

  64. A. Shuster,An Introduction to the Theory of Optics [in Russian], ONTI, Moscow, Leningrad (1935). A. Shuster,An Introduction to the Theory of Optics (3rd ed.), Edvard Arnold and Co, London (1928).

    Google Scholar 

  65. R. V. Paul,An Introduction to Optics [Russian translation], OGIZ Gostekhizdat, Moscow, Leningrad (1947), 484.

    Google Scholar 

  66. G. S. Landsberg,Optics (2nd ed.), [Russian translation], OGIZ Gostekhizdat, Moscow, Leningrad (1948), 631.

    Google Scholar 

  67. G. Szivessy and C. Schweers,Ann. der Physik,1, No. 7, 891–947 (1929).

    Article  ADS  Google Scholar 

  68. G. Szivessy and A. Dierkesmann,Ann. der Physik,11, No. 8, 949–984 (1931).

    Article  ADS  Google Scholar 

  69. G. Szivessy and C. Munster,Ann. der Physik,20, No. 7, 703–736 (1934).

    Article  MATH  ADS  Google Scholar 

  70. H. C. Jerrard,J. Opt. Soc. Am.,38, No. 1, 35–59 (1948).

    ADS  MathSciNet  Google Scholar 

  71. A. S. Marathay,J. Opt. Soc. Am.,61, No. 10, 1363–1372 (1971).

    ADS  MathSciNet  Google Scholar 

  72. A. Simon and R. Ulrich,Appl. Phys. Lett.,31, No. 10, 1363–1372 (1977).

    Google Scholar 

  73. R. Ulrich and A. Simon,Appl. Optics.,18, No. 13, 2241–2251 (1979).

    ADS  Google Scholar 

  74. S. C. Rashleigh and R. Ulrich,Appl. Phys. Lett.,34, No. 11, 768–770 (1979).

    Article  ADS  Google Scholar 

  75. F. Gauthier, J. Dubos, S. Blaison and P. Graindorge, “Attempt to Draw a Circular-Polarization Conserving Fiber,” in:Fiber-Optics Rotation Sensors (S. Ezekiel and H. J. Arditty, eds.), Springer Verlag, Berlin (1982), 196–200.

    Google Scholar 

  76. P. Ferdinand and J. L. Lesne, “Induced Circular Birefringence and Ellipticity Measurement in Faraday Effect Fiber Ring Interferometer,” in:Fiber-Optics Rotation Sensors (S. Ezekiel and H. J. Arditty, eds.), Springer Verlag, Berlin (1982), 215–221.

    Google Scholar 

  77. G. W. Day, D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen,J. Lightw. Techn.,LT 2, No. 1, 56–60 (1984).

    ADS  Google Scholar 

  78. R. Ulrich, in:Polarization and Depolarization in fiber-Optic Gyroscope, in Rotation Sensors (S. Ezekiel and H. J. Arditty, eds.), Springer Verlag, Berlin (1982), 52–57.

    Google Scholar 

  79. R. M. Azzam,J. Opt. Soc. Am.,68, No. 12, 1756–1757 (1979).

    ADS  MathSciNet  Google Scholar 

  80. S. R. Cloude,Optik.,75, No. 1, 26–36 (1986).

    Google Scholar 

  81. R. Galvani, R. Caponi, F. Cisterino, and G. Coppa,J. Lightw. Techn.,LT-5, No. 9, 1176–1182 (1987).

    ADS  Google Scholar 

  82. G. B. Malykin,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,32, No. 8, 1020–1024 (1989).

    Google Scholar 

  83. G. B. Malykin and D. Stepanov,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,33, No. 2, 255–258 (1990).

    Google Scholar 

  84. Z. Sekera, R. Nagaraia, and P. Dibble,Rev. Sci. Instr.,34, No. 7, 764–768 (1963)

    Article  ADS  Google Scholar 

  85. Yu. G. Vayner and U. V. Khangil'din,Opt. Spektrosk.,41, No. 2, 315–319 (1976).

    Google Scholar 

  86. H. C. Lefevre,Electron. Lett.,16, No. 20, 778–780 (1980).

    Article  ADS  Google Scholar 

  87. R. Ulrich and M. Johnson,Appl. Optics.,18, No. 11, 1857–1861 (1979).

    ADS  Google Scholar 

  88. R. Noe,Electron. Lett.,22, No. 15, 772–773 (1986).

    Article  Google Scholar 

  89. M. Johnson,Appl. Optics,18, No. 9, 1288–1289 (1979).

    ADS  Google Scholar 

  90. E. I. Alekseev, E. N. Bazarov, and V. G. Izraelyan,Kvant. Élektron.,11, No. 1, 171–173 (1984).

    Google Scholar 

  91. K. Itoh, T. Saiton, and Y. Ohtsuka,J. Lightw. Techn.,LT-5, No. 7, 916–919 (1987).

    Article  ADS  Google Scholar 

  92. R. Ulrich,Appl. Phys. Lett.,35, No. 11, 840–849 (1979).

    Article  ADS  Google Scholar 

  93. R. P. Tatam, C. N. Pannell, J. D. Jones, and D. A. Jackson,J. Lightw. Techn.,LT-5, No. 7, 980–985. (1987).

    ADS  Google Scholar 

  94. K. Goto, T. Sueta, and T. Makimoto,IEEE J. Quantum Électron.,QE-8, No. 6, 486–493 (1972).

    Article  ADS  Google Scholar 

  95. V. M. Gelikonov, D. D. Gusovskii, and V. I. Novikov,Pis’ma Zh. Tekhn. Fiz.,13, No. 13, 775–779, (1987).

    Google Scholar 

  96. M. Martinelli,Opt. Commun.,72, No. 6, 341–344 (1989).

    Article  ADS  Google Scholar 

  97. K. Warbrick,Electron. Lett.,22, No. 13, 711–713 (1986).

    Article  Google Scholar 

  98. V. V. Verestetskii, E. M. Lifshits, and L. P. Pitaevskii,Quantum Electrodynamics [in Russian], Nauka, Moscow (1989), 723.

    Google Scholar 

  99. L. D. Landau and E. M. Lifshits,Theory of the Field [in Russian], Nauka, Moscow (1967), 460.

    Google Scholar 

  100. V. L. Ginzburg,Theoretical Physics and Astrophysics [in Russian], Nauka, Moscow (1975), 414.

    Google Scholar 

  101. V. V. Zheleznyakov,Electromagnetic Fields in Space Plasma [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  102. E. Wolf,Nuovo Chimento,13, No. 6, 1165–1181 (1959).

    MATH  Google Scholar 

  103. G. B. Parrent and P. Roman,Nuovo Chimento,15, No. 3, 370–388 (1959).

    MathSciNet  Google Scholar 

  104. W. H. McMaster,Rev. Mod. Phys.,33, No. 1, 8–28 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  105. L. C. Bidenharn and J. D. Louck,Angular Momentum in Quantum Physics, Addison-Wesley, Massachusetts (1981).

    Google Scholar 

  106. L. Mandell and E. Wolf,Optical Coherence and Quantum Optics, Cambridge Univ. Press, N. Y., (1995), 1165.

    Google Scholar 

  107. L. Brillouin,Quantum Statistics [Russian translation], ONTI, Khar’kov-Kiev, (1934), 510. L. Bril-louin,Les Statistique Quantiques et Leurs Applications.

    Google Scholar 

  108. A. Beth,Phys. Rev.,48, No. 5, 471 (1935).

    Article  ADS  Google Scholar 

  109. A. Beth,Phys. Rev.,50, No. 2, 115–125 (1936).

    Article  ADS  MathSciNet  Google Scholar 

  110. V. S. Zapasskii and G. G. Kozlov,Opt. Spektrosk.,78, No. 1, 100–104 (1995).

    Google Scholar 

  111. V. M. Gelikonov, M. N. Kuchaeva, and G. B. Malykin,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,34 No. 6, 717–720 (1991).

    Google Scholar 

  112. S. C. Rashleigh,J. Lightw. Techn.,LT-1, No. 2, 312–331 (1983).

    ADS  Google Scholar 

  113. C. D. Poole, N. S. Bergano, N. E. Wagner, and H. J. Shulte,J. Lightw. Techn.,6, No. 7, 1185–1190 (1988).

    Article  ADS  Google Scholar 

  114. M. Tsubokava and M. Ohashi,J. Lightw. Techn.,9, No. 8, 948–951 (1990).

    Google Scholar 

  115. M. Santoro and C. D. Poole,J. Lightw. Techn.,12, No. 2, 288–293 (1994).

    Article  ADS  Google Scholar 

  116. G. B. Malykin,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,37, No. 2, 265–269 (1994).

    Google Scholar 

  117. A. J. Rodgoro, “Polarization Properties of Monomode Optical fibers: the Use of P. O. T. D. R. to Determine Spatial Distribution,” in:Fiber-Optics Rotation Sensors S. Ezekiel and H. J. Arditty, eds.), Springer Verlag, Berlin (1982), 208–214.

    Google Scholar 

  118. G. B. Malykin,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,35, No. 2, 189–199 (1992).

    Google Scholar 

  119. G. B. Malykin, I. M. Nefyodov, V. I. Pozdnyakova, and I. A. Shereshevskii,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,37, No. 12, 1567–1575 (1994).

    Google Scholar 

  120. R. B. Smith, C. O. Anderson, and G. L. Mitchel, “Numerical Modeling of Dual Polarization Interferometric Gyros and Sensors,” in:Fiber-Optics Rotation Sensors (S. Ezekiel and H. J. Arditty, eds.), Springer Verlag, Berlin (1982).

    Google Scholar 

  121. I. Ya. Molchanov and G. V. Skrotskii,Kvant. Élektron., No. 4, 2–26 (1971).

    Google Scholar 

  122. E. I. Alekseev, E. N. Bazarov, and V. G. Izraelyan,Kvant. Élektron.,11, No. 2, 397–400 (1984).

    Google Scholar 

  123. S. M. Rytov,Dokl. Akad. Nauk SSSR,18, No. 4–5, 263–267 (1938).

    Google Scholar 

  124. V. V. Vladimirskii,Dokl. Akad. Nauk SSSR,31, No. 3, 222–224 (1941).

    MathSciNet  Google Scholar 

  125. G. V. Permitin and A. I. Smirnov,Zh. Éksp. Teor. Fiz.,109, No. 3, 736–751 (1996).

    Google Scholar 

  126. S. A. Kharlamov, Private Communication.

  127. V. F. Zhuravlev,Prikl. Mech. Math.,60, No. 2, 323–326 (1996).

    MathSciNet  Google Scholar 

  128. A. Yu. Ishlinskii,Mechanics of Special Gyroscopic Systems [in Russian], Akad. Nauk Ukr. SSR, Kiev (1952), 432.

    Google Scholar 

  129. J. H. Hannay,J. Phys. A.,13, No. 2, 221–230 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  130. W. Ehrenberg and R. E. Siday,Proc. R. Soc. London,62, No. 349B, 8–21 (1949).

    Google Scholar 

  131. Y. Aharonov and D. Bohm,Phys. Rev.,115, No. 3, 485–491 (1959).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  132. R. G. Chambers,Phys. Rev. Lett.,5, No. 1, 3–5 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  133. M. Berry and J. H. Hannay,J. Phys. A.,21, No. 6, L325-L331 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  134. M. Berry,Nature,326, No. 6110, 277–278 (1987).

    Article  ADS  Google Scholar 

  135. M. Berry,J. Mod. Opt.,34, No. 11, 1400–1407 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  136. R. Crane,Appl. Opt.,8, No. 3, 538–540 (1969).

    Google Scholar 

  137. F. D. Haldane,Opt. Lett.,11, No. 11, 730–732 (1986).

    Article  ADS  Google Scholar 

  138. T. M. Chyba, L. J. Wang, L. Mandel, and R. Simon,Opt. Lett.,13, No. 7, 562–564 (1988).

    Article  ADS  Google Scholar 

  139. R. Simon, H. J. Kimble, and E. C. Sudarshan,Phys. Rev. Lett.,61, No. 1, 19–22 (1988).

    Article  ADS  Google Scholar 

  140. R. Bhandari,Phys. Lett.,A133, Nos. 1–2, 1–3 (1988).

    Article  ADS  Google Scholar 

  141. R. Bhandari,Phys. Lett.,A138, No. 9, 469–473 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  142. R. Bhandari and T. Dasgupta,Phys. Lett. A143, Nos. 4–5, 170–175 (1990).

    ADS  Google Scholar 

  143. P. Hariharan and P. E. Ciddor,Opt. Commun.,110, Nos. 1–2, 13–17 (1994).

    Article  ADS  Google Scholar 

  144. H. Schmultze, S. Klein, and W. Dultz,Phys. Rev. Lett.,71, No. 10, 1530–1533 (1994).

    ADS  Google Scholar 

  145. S. P. Tewaris, V. S. Ashoka, and M. S. Ramana,Opt. Commun.,120, Nos. 5–6, 235–238 (1995).

    Article  ADS  Google Scholar 

  146. S. M. Kozel, V. N. Listvin, S. V. Shatalin, and R. V. Yushkaytis,Opt. Spektrosk.,61, No. 6, 1295–1299, (1986).

    Google Scholar 

  147. G. B. Malykin,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,34, No. 2, 817–824 (1991).

    Google Scholar 

  148. G. B. Malykin,Opt. Spektrosk.,81, No. 3.

  149. G. B. Malykin,Opt. Spektrosk., (in press).

  150. M. Kugler and S. Shtrikman,Phys. Rev. D.,37, No. 4, 934–937 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  151. M. Berry,Proc. R. Soc. London,A414, No. 1846, 31–46 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  152. Klyshko,Phys. Lett.,A140, No. 1–2, 19–24 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  153. H. Poincaré, “Science and Method,” in: H. Poincaré,On Science [in Russian], Nauka, Moscow (1983), 283–400.

    Google Scholar 

  154. H. Poincaré,On the Curves Determined by Differential Equations (A. A. Andronov, ed.) [Russian translation by E. Leontovich and A. Mayer], OGIZ, Moscow-Leningrad (1947).

    Google Scholar 

  155. I. Bendixon,Acta Math.,24, No. 1, 1 (1901).

    Article  MathSciNet  Google Scholar 

  156. A. A. Andronov, “Poincaré Limit Cycles and Oscillation Theory,” Lect. Proc., the 6th Congress of Russian Physicists, Gos. Izd., Moscow-Leningrad (1928), 23–24; A. A. Andronov, in: Collection of Works, Izd. Akad. Nauk SSSR, Moscow (1956), 32–33.

    Google Scholar 

  157. A. A. Andronov, A. A. Vitt, and S. E. Khaykin,Oscillation Theory (3rd ed.) [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  158. G. A. Lorentz, H. Poincaré, A. Einstien, and G. Minkovskii,Principle of Relativity (V. K. Frederix and D. D. Ivanenko, eds.) [in Russian], ONTI, Moscow-Leningrad (1935).

    Google Scholar 

  159. Principle of Relativity. Collection of Works on the Relativity Theory (A. A. Tyapkin, comp.) [in Russian], Atomizdat, Moscow (1973), 331.

  160. A. A. Logunov,On Poincaré Paper “On Electron Dynamics” [in Russian], Moscow State Univer., Moscow (1988), 100.

    Google Scholar 

  161. H. Poincaré, “Science and Hypothesis,” in: H. PoincaréOn Science [in Russian], Nauka, Moscow (1983), 5–152.

    Google Scholar 

  162. H. Poincaré, Collection of Works, Vol. 3 [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  163. A. Tyapkin and A. Shibanov,Poincaré [in Russian], Molodaya Gvardiya, Moscow (1979).

    MATH  Google Scholar 

  164. G. Darbux, D’Henri Poincaré, in: H. PoincaréPubliees. Vol. 2, Paris (1916).

  165. W. Swindell,Polarized Light, Strousburg (1975) 142–152.

  166. Grand Larousse Encyclopedique,13, Paris (1970).

  167. Dictionary of Scientific Biography,9, Charles Scribner’s Sons, N. Y. (1974).

Download references

Authors

Additional information

Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 40, No. 3, pp. 265–307, March. 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malykin, G.B. Use of the poincare sphere in polarization optics and classical and quantum mechanics. Review. Radiophys Quantum Electron 40, 175–195 (1997). https://doi.org/10.1007/BF02676342

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02676342

Keywords

Navigation