Skip to main content
Log in

31P-MR Spectroscopy for the evaluation of energy metabolism in intact residual myocardium after acute myocardial infarction in humans

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

experimental studies have demonstrated that acute myocardial infarction (MI) alters energy metabolism even in non-infarcted adjacent tissue. In patients with subacute MI, the influence of the regional ischemie insult on energy metabolism of intact septal myocardium was analyzed using31P-Magnetic resonance spectroscopy (MRS).

Patients and Methods

in eight patients with wall motion abnormalities in the anterior wall31P-spectra were obtained from non-infarcted adjacent scptal myocardium, as well as infarcted anterior myocardium (voxel size 25 ccm each) 29 ±8 days after MI using a 3D-CSI technique. Additionally, cardiac function was analyzed using breath-hold cine MRI. MR1 was repeated 6 months after revascularization to assess viability of infarcted segments. Eight age-matched healthy volunteers served as control group.

Results

according to follow-up MRI 4/8 patients showed regional wall motion recovery. Here, PCr/ATP-ratios were not significantly reduced in intact septal myocardium as well as infarcted anterior myocardium compared to healthy volunteers (1.28 ±0.10 and 1.14 ±0.09 vs. 1.45 ±0.29). No recovery of regional function was detected in 4/8 patients with —therefore—non-viable anterior myocardium. PCr/ATP-ratios were significantly reduced in intact and infarcted myocardium compared with healthy volunteers as well as to patients with wall motion recovery (0.77 ±0.17 and 0.49 ±0.23;P < 0.05).

Discussion

these preliminary results indicate that energy metabolism is reduced in patients with persisting wall motion abnormalities after myocardial infarction and revascularization in ischemically injured as well as in adjacent non-injured myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiss RG, Kalil-Filho R, Herskowitz A, Chacko VP, Litt M, Stern MD, Gerstenblith G. Tricarboxylic acid cycle activity in postischemic rat hearts. Circulation 1993;87:270–82.

    PubMed  CAS  Google Scholar 

  2. Neubauer S, Horn M, Naumann A, Tian R, Hu K, Laser M, Friedrich J, Gaudron P, Schnackerz K, Ingwall J, Ertl G. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest 1995;95:1092–100.

    Article  PubMed  CAS  Google Scholar 

  3. Sanbe A, Tanonaka K, Hanaoka Y, Katoh T, Takeo. Regional energy metabolism of failing hearts following myocardial infarction. J Mol Cell Cardiol 1993;25:995–1013.

    Article  PubMed  CAS  Google Scholar 

  4. Sharkey SW, Murakami MM, Smith SA, Apple FS. Canine myocardial creatine kinase isoenzymes after chronic coronary artery occlusion. Circulation 1991;84:333–40.

    PubMed  CAS  Google Scholar 

  5. Ingwall JS. Is cardiac failure a consequence of decreased energy reserve? Circulation 1993;87(Suppl 7):58–62.

    Google Scholar 

  6. Glasser SP. The time course of left ventricular remodeling after acute myocardial infarction. Am J Cardiol 1997;80:506–7.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang J, Wilke N, Wang Y, Zhang Y, Wang C, Eijgelshoven MHJ, Cho YK, Murakami Y, Ugurbil K, Bache RJ, From AHL. Functional and bioenergetic consequences of postinfarc-tion left ventricular remodeling in a new porcine model: an MRI and31P MRS study. Circulation 1996;94:1089–99.

    PubMed  CAS  Google Scholar 

  8. Neubauer S, Krahe T, Schindler R, Hillenbrand H, Entzeroth C, Horn M, Bauer WR, Stephan T, Lackner K, Haase A, Ertl G. Cardiac31P magnetic resonance spectroscopy of volunteers and patients with coronary artery disease and dilated cardiornyopa-thy. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 1992;86:1810–8.

    PubMed  CAS  Google Scholar 

  9. Beer M, Sandstede J, Landschütz W, Viehrig M, Harre K, Horn M, Meininger M, Pabst T, Kenn W, Haase A. von Kienlin M, Neubauer S, Hahn D. Altered energy metabolism after myocardial infarction assessed by31P-MR-spectroscopy in humans. Eur Radiol 2000;10:1323–8.

    Article  PubMed  CAS  Google Scholar 

  10. Sandstede J, Lipke C, Beer M, Harre K, Pabst T, Kenn W, Neubauer S, Hahn D. Cine MRI for the evaluation of influences of regional left ventricular wall motion abnormalities on global cardiac function after myocardial infarction and revascularisa-tion therapy. Fortschr Roentgenstr 1999;171:424 30.

    Article  Google Scholar 

  11. Sandstede JJW, Lipke C, Beer M, Harre K, Pabst T, Kenn W, Neubauer S, Hahn D. Analysis of first-pass and delayed contrast-enhancement patterns of dysfunctional myocardium on MR imaging: use in the prediction of myocardial viability. Am J Radiol 2000;174:1737–40.

    CAS  Google Scholar 

  12. Bottomley PA, Hardy CJ. Proton Overhauser enhancements in human cardiac phosphorus NMR spectroscopy at 1.5 T. Magn Reson Med 1992;24:384–90.

    Article  PubMed  CAS  Google Scholar 

  13. Vanhamme L, van den Boogaart A, van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997;129:35–43.

    Article  PubMed  CAS  Google Scholar 

  14. Meininger M, Landschütz W, Beer M, Seyfarth T, Horn M, Pabst T, Haase A, Hahn D, Neubauer S, von Kienlin M. Concentrations of human cardiac phosphorus metabolites determined by SLOOP31P NMR spectroscopy. Magn Reson Med 1999;41:657–63.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang J, Ugurbil K, From AHL, Bache RJ. Use of magnetic resonance spectroscopy for in vivo evaluation of high-energy phosphate metabolism in normal and abnormal myocardium. J Cardiovasc Magn Reson 2000;2(1):23–32.

    PubMed  CAS  Google Scholar 

  16. Bolli R. Myocardial ‘stunning’ in man. Circulation 1992;86:1671–91.

    PubMed  CAS  Google Scholar 

  17. Beer M, Landschütz W, Meininger M, Seyfarth T, Viehrig M, Sandstede J, Pabst T, Kenn W, Horn M, Harre K, van Kienlin M, Neubauer S, Hahn D. Determination of absolute concentrations of cardiac high-energy phosphates using31P-MR-spec-troscopy and SLOOP in healthy and diseased myocardium. Rofo Fortschr Geb Roentgenstr Neuen Bildgeb Verfahr 1999;171(1):65–8.

    Article  CAS  Google Scholar 

  18. Bottomley PA. MR-spectroscopy of the human heart: the status and the challenges. Radiology 1994;191:593 612.

    PubMed  Google Scholar 

  19. Kalil-Filho R, de Albuquerque CP, Weiss RG, Mocelim A, Belotti G, Cerri G, Pileggi F. Normal high energy phosphate reatios in ‘stunned’ human myocardium. J Am Coll Cardiol 1997;30(5): 1228–32.

    Article  PubMed  CAS  Google Scholar 

  20. Okada M, Mitsunami K, Inubushi T, Kinoshita M. Influence of aging or left ventricular hypertrophy on the human heart: contents of phosphorous metabolites measured by31P-MRS. Magn Reson Med 1998;39:772–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Beer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, M., Buchner, S., Sandstede, J. et al. 31P-MR Spectroscopy for the evaluation of energy metabolism in intact residual myocardium after acute myocardial infarction in humans. MAGMA 13, 70–75 (2001). https://doi.org/10.1007/BF02668154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668154

Keywords

Navigation