Skip to main content
Log in

A reevaluation of the Fe-N and Fe-C-N systems

  • Published:
Journal of Phase Equilibria

Abstract

The γ′/ε phase boundary in the Fe-N and Fe-C-N systems plays an important role in the nitriding and nitrocarburizing processes. A study has been undertaken in order to resolve the discrepancy between previous calculations and experiments on the γ′/ε equilibrium.1–4 The narrow composition range of the γ′ phase is introduced by applying a two-sublattice solution model, which gives a more accurate description of the phase boundaries involving γ′ and ε. Furthermore, an estimation procedure based on the systematics of bonding properties and vibrational entropy of 3d-transition metal compounds5,6 is used to modify the descriptions of the cementite and the χ carbonitrides in Fe-C-N, which were not well established in the most recent assessment.4

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Cited References

  1. M. Hillert and M. JarI,Metall. Trans.A, 6, 553–559 (1975).

    Article  Google Scholar 

  2. K. Frisk,Calphad, 15(1), 79–106 (1991).

    Article  Google Scholar 

  3. J. Kunze,Nitrogen and Carbon in Iron and Steel—Thermodynamics, Akademie-Verlag Berlin (1990).

    Google Scholar 

  4. H. Du and M. Hillert,Z Metallkd., 82, 310–316 (1991).

    Google Scholar 

  5. A. Fernández Guillermet and G. Grimvall,Phys. Rev. B, 40, 10582–10593 (1989).

    Article  ADS  Google Scholar 

  6. A. Fernández Guillermet and G. Grimvall,J. Phys. Chem. Solids, 53, 105–125 (1992).

    Article  ADS  Google Scholar 

  7. E. J. Mittemeijer, H. C. F. Rozendaal, P. F. Colijn, P. J. Van Der Schaaf, and R. Th. Furnée,Heat Treatment ’81’, London, The Metals Society, 107–115 (1983).

  8. V. G. Paranjpe, M. Cohen, M. B. Bever, and C.F. Floe,Trans. AIME, 188, 261–267 (1950).

    Google Scholar 

  9. E. Lehrer,Z Elektrochem, 36, 460–473 (1930) in German.

    Google Scholar 

  10. A. Burdese,Metallurgia Italiana, 47, 357–366 (1955).

    Google Scholar 

  11. C. Wagner,Thermodynamics of Alloys, Addison-Wesley Publishing Company, Inc., Reading, MA, USA, 58–61 (1952).

    Google Scholar 

  12. H.J. Grabke,Ber. Bunsenges. Phys. Chem., 73, 596–601 (1969) in German.

    Google Scholar 

  13. A. Fernández Guillermet and P. Gustafson,High-Temp.—High Press., 16, 591–610 (1985).

    Google Scholar 

  14. J.-O. Andersson,Calphad, 12(1), 9–23 (1988).

    Article  Google Scholar 

  15. P. Gustafson,Scand. J. Metall., 14, 259–267 (1985).

    Google Scholar 

  16. K.H. Jack,Proc. R. Soc. (London) A, 195, 41–55 (1948).

    Article  ADS  Google Scholar 

  17. J.-P. Sénateur, R. Fruchart, and A. Michel,C.R. Acad. Sci., 255, 1615–1616 (1962) in French.

    Google Scholar 

  18. K. Kuo and L.E. Persson,J. Iron Steel Inst., 178, 39–44 (1954).

    Google Scholar 

  19. Z. Przytecki and L. Matzinski,Carbides, Nitrides, and Borides, Poznan/Kolobrzeg, Poland, 153–162 (1987).

    Google Scholar 

  20. M.A.J. Somers, N.M. Van Der Pers, D. Schalkoord, and E.J. Mittemeijer,Metall. Trans. A, 21, 189–204 (1990).

    Article  Google Scholar 

  21. M.A.J. Somers, P.F. Colijn, W.G. Sloof, and E.J. Mittemeijer,Z Metallkd., 81, 33–43 (1990).

    Google Scholar 

  22. A. Wells, Ph.D. thesis, The University of Liverpool (1982).

  23. Kagawa and T. Okamoto,Trans. Jpn. Inst. Met, 22(2), 137–143 (1981).

    Article  Google Scholar 

  24. F.K. Naumann and G. Langenscheid,Arch. Eisenhüttenwes., 36, 677–682 (1965) in German.

    Article  Google Scholar 

  25. M.A. Somers and EJ. Mittereijer,Surf.Eng., 3(2), 123–137 (1987).

    Article  Google Scholar 

  26. J. Chipman,Metall. Trans. A, 3, 55–64 (1972).

    Article  ADS  Google Scholar 

  27. L.C. Browning, T.W. Dewitt, and P.H. Emmett,J. Am. Chem. Soc., 72, 4211–217 (1950).

    Article  Google Scholar 

  28. A. Fernández Guillermet, unpublished work.

  29. G. Grimvall and J. Rosén,Int. J. Thermophys., 4, 139–147 (1983).

    Article  ADS  Google Scholar 

  30. B. Jansson,Trita-Mac-0234, Div. Phys. Met., Royal Inst. Tech Stockholm, Sweden (1984).

    Google Scholar 

  31. B. Jansson, Internal Report D57, Div. Phys. Met., Royal Inst. Tech., Stockholm, Sweden (1984).

    Google Scholar 

  32. B. Sundman, B. Jansson, and J.-O. Andersson,Calphad, 9(2), 153–190 (1985).

    Article  Google Scholar 

  33. H.A. Wriedt,Trans. Metall. Soc. AIME, 245, 43–46 (1969).

    Google Scholar 

  34. K.H. Jack,Acta Crystallogr., 5, 404–411 (1952).

    Article  Google Scholar 

  35. K. Frisk,Calphad, 11(2), 127–134 (1987).

    Article  Google Scholar 

  36. K.H. Jack,Proc. R. Soc. A, 208, 200–215 (1951).

    Article  ADS  Google Scholar 

  37. D. Atkinson and C. Bodsworth,J. Iron Steel Inst., 208, 587–593 (1970).

    Google Scholar 

  38. Z. Przytecki,Sesja Naukowa Kom. Techn. Budowy Maszyn, Poznan, 35–84 (1979).

  39. E. Lehrer,Z Elektrochem., 36, 383–392 (1930) in German.

    Google Scholar 

  40. A. Wells and T. Bell,Heat Treat. Met., 2, 39–44 (1983).

    Google Scholar 

  41. X. Zuyao and L. Lin,Mater. Sci. Technol., 3, 325–328 (1987).

    Article  Google Scholar 

  42. J. Slycke, L. Sproge, and J. Ågren,Scand. J. Metall., 17, 122–126 (1988).

    Google Scholar 

  43. L.J. Dijkstra,Trans. AIME, 185, 252–260 (1949).

    Google Scholar 

  44. N.S. Corney and E.T. Turkdogan,J. Iron Steel Inst., 180, 334–348 (1955).

    Google Scholar 

  45. J.D. Fast and M.B. Varrijp,J. Iron Steel Inst., 180, 337–343 (1955).

    Google Scholar 

  46. W Pitsch and E. Houdremont,Arch. Eisenhüttenwes., 27, 281–284 (1956) in German.

    Article  Google Scholar 

  47. R. Rawlings and D. Tambini,J. Iron Steel Inst., 184, 302–308 (1956).

    Google Scholar 

  48. L. Matzinski, Z. Przytecki, and J. Kunze,Steel Res., 57(12), 645–649 (1986).

    Article  Google Scholar 

  49. L.S. Darken, R.P. Smith, and E.W. Filer,Trans. AIME, 191, 1174–1179 (1951).

    Google Scholar 

  50. R.W. Fountain and J. Chipman,Trans. TMS-AIME, 212, 737–748 (1958) in German.

    Google Scholar 

  51. H.A. Wriedt and O.D. Gonzalez,Trans. TMS-AIME, 221, 532–535 (1961).

    Google Scholar 

  52. T. Mori, K. Shinmyo, E. Ichise, and S. Koyama,Mem. Fac. Eng., Kyoto Univ., 25, 175–187 (1963) in Japanese.

    Google Scholar 

  53. H. Schenck, M.G. Frohberg, and F. Reinders,Stahl Eisen, 83, 93–99 (1963) in German.

    Google Scholar 

  54. P. Grieveson and E.T. Turkdogan,Trans. TMS-AIME, 230, 407–414 (1964).

    Google Scholar 

  55. I.N. Milinskaya and J.A. Tomlin,Akad. Nauk SSSR Doklady, 174, 135–138 (1967) in Russian.

    Google Scholar 

  56. H. Zitter and L. Habel,Arch. Eisenhüttenwes., 44, 181–188 (1973) in German.

    Article  Google Scholar 

  57. R.B. McLellan and R.J. Farraro,ActaMetall., 28, 417–422 (1980).

    Google Scholar 

  58. H. Feichtinger, A. Satir-Kolorz, and Z. Xiao-Hong,International Conference on High-Nitrogen Steels “HNS 88,” Lille, France, 75–80 (1988).

  59. J. Kunze and K. Friedrich,Neue Hutte, 29(10), 378–382 (1984) in German.

    Google Scholar 

  60. M. Naka, T. Masumoto, and Y. Imai,Sci. Rep. Res. Inst. Tohoku Univ., 24(1–2), 30–47 (1972) in Japanese.

    Google Scholar 

  61. A.P. Bashchenko, VI. Izotov, A.V. Omel’chenko, V.I. Soshnikov, and G.V. Shcherbedinskii,Izv. Akad. Nauk SSSR, Met, 4, 173–178 (1985) in Russian.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, H. A reevaluation of the Fe-N and Fe-C-N systems. JPE 14, 682–693 (1993). https://doi.org/10.1007/BF02667880

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667880

Keywords

Navigation