Skip to main content
Log in

Mechanisms of inclusion formation in Al−Ti−Si−Mn deoxidized steel weld metals

  • Alloy Phases
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The present investigation is concerned with basic studies of the mechanisms of inclusion formation in submerged arc (SA), gas metal arc (GMA), and flux cored arc (FCA) steel weld metals. Theoretical models of deoxidation have been developed to establish a basis for quantitative predictions of important inclusion characteristics, such as volume fraction, size, and chemical composition from knowledge of weld metal chemistry and operating parameters. The relevance of these models has been tested against extensive inclusion data obtained from scanning electron microscope (SEM) and scanning transmission electron microscope (STEM) examinations of a large number of experimental welds containing various contents of aluminum, titanium, silicon, manganese, and oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.S. Chai and T.W. Eagar:Metall. Trans. B, 1981, vol. 12B pp. 539–47.

    CAS  Google Scholar 

  2. D.J. Corderoy, B. Wills, and G.R. Wallwork:Proc. Int. Conf Weld Pool Chemistry and Metallurgy, London, April 1980, Th Welding Institute, Abington, U.K., paper 12, pp. 147–53.

  3. Ø. Grong and N. Christensen:Scand. J. Metall., 1983, vol. 12 pp. 155–65.

    CAS  Google Scholar 

  4. Ø. Grong, N.H. Rörå, and N. Christensen:Scand. J. Metall., 1984, vol. 13, pp. 154–56.

    CAS  Google Scholar 

  5. N. Christensen and Ø. Grong:Scand. J. Metall., 1986, vol. 15 pp. 30–40.

    CAS  Google Scholar 

  6. E.T. Turkdogan:Proc. Int. Conf. Chem. Metall. of Iron and Steel Sheffield, U.K., July 1971, The Iron and Steel Institute, London 1973, pp. 153–70.

    Google Scholar 

  7. U. Lindberg and K. Torsell:Trans. TMS-AIME, 1968, vol. 247 pp. 94–102.

    Google Scholar 

  8. N.F. Grevillius:Jerkont. Ann., 1969, vol. 153, pp. 547–72.

    CAS  Google Scholar 

  9. Ø. Grong and D.K. Matlock:Int. Metall. Rev., 1986, vol. 31 pp. 27–48.

    CAS  Google Scholar 

  10. Ø. Grong, T. A. Siewert, G. P. Martins, and D. L. Olson:Metall. Trans. A., 1986, vol. 17A, pp. 1797–807.

    CAS  Google Scholar 

  11. A. O. Kluken, H. Hemmer, and Ø. Grong: Report No. STF34 A86083, SINTEF, Trondheim, Norway, 1986.

    Google Scholar 

  12. A. O. Kluken and Ø. Grong: Report No. STF34 A87001, SINTEF, Trondheim, Norway, 1986.

    Google Scholar 

  13. A. O. Kluken, M. I. Onsöien, H. Hemmer, and O. M. Akselsen: Report No. STF34 A87140, SINTEF, Trondheim, Norway, 1987.

    Google Scholar 

  14. A. O. Kluken, Ø. Grong, and J. Hjelen:Mater. Sci. and Tech., 1988, vol. 4, pp. 649–54.

    CAS  Google Scholar 

  15. T. Toya and A. Kato: Proc. 82 User's Meeting of EPMA, 1982, JEOL Ltd., Tokyo, Japan.

  16. G. Thewlis and D. R. Milner:Weld. J., 1977, vol. 56, pp. 281s-88s.

    Google Scholar 

  17. A. G. Franklin:J. Iron Steel Inst, 1969, vol. 207, pp. 181–86.

    CAS  Google Scholar 

  18. R. L. Fullman:Trans. AIME, 1953, vol. 197, pp. 447–52.

    CAS  Google Scholar 

  19. N. Christensen, V. de L. Davis, and K. Gjermundsen,Br. Weld. J., 1965, vol. 12, pp. 54–75.

    Google Scholar 

  20. M. F. Ashby and R. Ebeling:Trans. TMS-AIME, 1966, vol. 236, pp. 1396–404.

    CAS  Google Scholar 

  21. E. E. Underwood:Quantitative Stereology, Addison-Wesley Publishing Co., London, 1970, pp. 109–47.

    Google Scholar 

  22. N. A. Fleck, Ø. Grong, G. R. Edwards, and D. K. Matlock:Weld. J., 1986, vol. 65, pp. 113s-21s.

    Google Scholar 

  23. Ø. Grong, T. A. Siewert, and G. R. Edwards:Weld. J., 1986, vol. 65, pp. 279s-88s.

    Google Scholar 

  24. G. Thewlis: IIW Doc. IIA-736-88, 1988.

  25. B. R. Keville:Weld. J., 1983, vol. 62, pp. 253s-60s.

    Google Scholar 

  26. J. M. Dowling, J. M. Corbett, and H. W. Kerr:Metall. Trans. A, 1986, vol. 17A, pp. 1611–23.

    CAS  Google Scholar 

  27. A. R. Mills, G. Thewlis, and J. A. Whiteman:Mater. Sci. and Tech., 1987, vol. 3, pp. 1051–62.

    CAS  Google Scholar 

  28. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin:Scanning Electron Microscopy and X-Ray Microanalysis, Plenum Press, New York, NY, 1981, pp. 305–58.

    Google Scholar 

  29. L. Devillers, D. Kaplan, B. Marandet, A. Ribes, and P. V. Ribound:Proc. Int. Conf. Effects of Residual, Impurity and Micro-Alloying Elements on Weldability and Weld Properties, London, Nov. 1983, The Welding Institute, Abington, U.K., paper 1, pp. 1–7.

    Google Scholar 

  30. G. S. Barritte, R.A. Ricks, and P. R. Howell:Proc. Int. Conf. Quantitative Microanalysis with High Spatial Resolution, TMS, London, 1981.

  31. R. C. Chochrane, J. L. Ward, and B. R. Keville:Proc. Int. Conf. Effects of Residual, Impurity and Micro-Alloying Elements on Weldability and Weld Properties, London Nov. 1983, The Welding Institute, Abington, U.K., paper 16, pp. 1–41.

    Google Scholar 

  32. L. Devillers, D. Kaplan, A. Ribes, and P. V. Ribound:Mém. Sci. Rev. Mét., 1986, vol. 83, pp. 43–62.

    CAS  Google Scholar 

  33. R. Kiessling:Non-Metallic Inclusions in Steel, TMS, London, 1978, Part I, pp. 1–104, Part II, pp. 1–149.

    Google Scholar 

  34. G. M. Evans:Metal Constr., 1986, vol. 18, pp. 631R-36R.

    CAS  Google Scholar 

  35. N. Mori, H. Homma, S. Ohkita, and M. Wakabayashi: IIW Doc. IX-1196-81, 1981.

  36. J. L. Murray and H. A. Wriedt:Bull. Alloy Phase Diag., 1987, vol. 8, pp. 148–65.

    CAS  Google Scholar 

  37. M. L. Turpin and J. F. Elliott:J. Iron Steel Inst., 1966, vol. 204, pp. 217–25.

    CAS  Google Scholar 

  38. G. K. Sigworth and J. F. Elliot:Metall. Trans., 1973, vol. 4, pp. 105–13.

    CAS  Google Scholar 

  39. E. T. Turkdogan:J. Iron Steel Inst., 1966, vol. 204, pp. 914–19.

    CAS  Google Scholar 

  40. E. T. Turkdogan:Physicochemical Properties of Molten Slags and Glasses, TMS, London, 1983, pp. 89–180.

    Google Scholar 

  41. L. M. Hocking:Quart. J. Royal Meteor. Soc., 1959, vol. 85, pp. 44–50.

    Article  Google Scholar 

  42. C. Wagner:Z. Elektrochemie, 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  43. D. Rosenthal:Weld J., 1941, vol. 20, pp. 220s-34s.

    Google Scholar 

  44. N. Christensen:Welding Metallurgy, The Norwegian Institute of Technology, Trondheim, Norway, 1985, pp. 1–77.

    Google Scholar 

  45. J. M. Lifshiftz and V. V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  46. G. W. Greewood:Proc. Symp. Mechanism of Phase Transf. in Cryst. Solids, Manchester, 1968, University of Manchester, Manchester, England, 1969, pp. 103–10.

    Google Scholar 

  47. S. C. Jain and A. E. Hughes:J. Mater. Sci., 1978, vol. 13, pp. 1611–31.

    Article  CAS  Google Scholar 

  48. N. Hannerz and T. Werlefors:Proc. Int. Conf. Weld Pool Chemistry and Metallurgy, London, April 1980, The Welding Institute, Abington, U.K., paper 43, pp. 335–49.

    Google Scholar 

  49. H. Terashima and P. H. M. Hart:Proc. Int. Conf. Effect of Residual, Impurity and Micro-Alloying Elements on Weldability and Weld Properties, London, Nov. 1983, The Welding Institute, Abington, U.K., paper 27, pp. 1–22.

    Google Scholar 

  50. H. Homma, S. Ohkita, S. Matsuda, and K. Yamamoto:Weld. J., 1987, vol. 66, pp. 301s-09s.

    Google Scholar 

  51. S. Matsuda and N. Okumura:Trans. ISIJ, 1978, vol. 18, pp. 198–205.

    CAS  Google Scholar 

  52. M. E. Saggese, A. R. Bhatti, D. N. Hawkins, and J. A. Whiteman:Proc. Int. Conf. Effect of Residual, Impurity and Micro-Alloying Elements on Weldability and Weld Properties, London, Nov. 1983, The Welding Institute, Abington, U.K., paper 15, pp. 1–11.

    Google Scholar 

  53. J. K. Brownlee, D. K. Matlock, and G. R. Edwards:Proc. Int. Conf. Advances in Welding Science and Technology, Gatlinburg, TN, May 1986, ASM, 1986, pp. 245–50.

  54. S. Liu and D. L. Olson:Weld. J., 1986, vol. 65, pp. 139s-49s.

    Google Scholar 

  55. L. A. Huseen and D. N. Hawkins:Microstruct. Sci., 1983, vol. 11, pp. 113–26.

    CAS  Google Scholar 

  56. A. O. Kluken and Ø. Grong: Report No. STF34 F87125, SINTEF, Trondheim, Norway, 1987.

    Google Scholar 

  57. D. J. Widgery:Weld. J., 1976, vol. 55, pp. 57s-68s.

    Google Scholar 

  58. S. S. tuliani, T. Boniszewski, and N. F. Eaton:Weld. Met. Fabr., 1969, vol. 37, pp. 327–39.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kluken, A.O., Grong, Ø. Mechanisms of inclusion formation in Al−Ti−Si−Mn deoxidized steel weld metals. Metall Trans A 20, 1335–1349 (1989). https://doi.org/10.1007/BF02665492

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665492

Keywords

Navigation