Skip to main content
Log in

Nucleation of solidification in liquid droplets

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Analytical and numerical methods have been developed to analyze the solidification kinetics of a mass of liquid droplets dispersed in a fluid or solid matrix using classical nucleation theory. The resulting analytical expressions and numerical calculations can be compared directly with calorimetric measurements of the droplet solidification exotherms to obtain information about the nucleation mechanism. With increasing contact angle at the solid-liquid-matrix triple point, the solidification onset, peak, and end temperatures and exothermic peak height all decrease sharply and the droplet solidification exotherms become broader. Decreasing either the droplet radius or the number of potential catalytic nucleation sites produces a similar but smaller effect. Distributions in droplet radius, contact angle, and nucleation sites have no effect on the solidification peak temperature, but the droplet solidification exotherms become broader and more symmetric. The solidification onset temperature is independent of cooling rate in the calorimeter, but the solidification peak and end temperatures decrease and the exothermic peak height increases with increasing cooling rate. Predicted droplet solidification exotherms are in excellent agreement with detailed experimental measurements on 10-nm-radius Cd droplets embedded in a solid Al matrix. Analytical predictions give best-fit values of 43 deg and 430 for the contact angle and the number of potential catalytic nucleation sites per droplet, respectively; numerical predictions give best-fit values of 43 deg and 750 for the contact angle and the number of potential catalytic nucleation sites per droplet, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Vonnegut:J. Colloid Sci., 1948, vol. 3, p. 563.

    Article  CAS  Google Scholar 

  2. D. Turnbull:J. Chem. Phys., 1950, vol. 18, p. 768.

    Article  CAS  Google Scholar 

  3. D. Tumbull and R.E. Cech:J. Appl. Phys., 1950, vol. 21, p. 804.

    Article  Google Scholar 

  4. D. Tumbull:J. Met., 1950, vol. 188, p. 1144.

    Google Scholar 

  5. V. Scripov: inCrystal Growth and Materials, E. Kaldis and H. Scheel, eds., North-Holland, Amsterdam, 1977, p. 1327.

  6. M.G. Stowell:Phil. Mag., 1970, vol. 22, p. 1.

    Article  Google Scholar 

  7. J.H. Perepezko, D.H. Rasmussen, I.E. Anderson, and C.R. Loper: inSolidification and Casting of Metals, Metals Society, London, 1979, p. 169.

    Google Scholar 

  8. J.H. Perepezko: inRapid Solidification Processing: Principles and Technology, R. Mehrabian, B.H. Kear, and M. Cohen, eds., Claitors, Boston, 1980, p. 56.

    Google Scholar 

  9. Y. Miyazawa and G. Pound:J. Cryst. Growth, 1974, vol. 23, p. 45.

    Article  CAS  Google Scholar 

  10. M.G. Chu, Y. Shiohara, and M.C. Flemings:Metall. Trans. A, 1984, vol. 15A, p. 1303.

    CAS  Google Scholar 

  11. K.P. Cooper, I.E. Anderson, and J.H. Perepezko: inRapidly Quenched Metals IV, K. Suzuki and T. Masumoto, eds., Japan Institute of Metals, Sendai, 1982, p. 107.

    Google Scholar 

  12. B.A. Mueller, J.J. Richmond, and J.H. Perepezko: inRapidly Quenched Metals V, S. Steeb and H. Warlimont, eds., North-Holland, Amsterdam, 1985, p. 47.

    Google Scholar 

  13. J.H. Perepezko, B.A. Mueller, J.J. Richmond, and K.P. Cooper: inRapidly Quenched Metals V, S. Steeb and H. Warlimont, eds., North-Holland, Amsterdam, 1985, p. 43.

  14. D.G. Maclsaac, Y. Shiohara, M.G. Chu, and M.C. Flemings: inGrain Refinement in Castings and Welds, AIME, New York, NY, 1983, p. 87.

    Google Scholar 

  15. J.H. Perepezko and J.S. Smith:J. Non-Cryst. Solids, 1981, vol. 44, p. 65.

    Article  CAS  Google Scholar 

  16. J.H. Perepezko and J.S. Paik:J. Non-Cryst. Solids, 1984, vol. 61-62, p. 113.

    Article  CAS  Google Scholar 

  17. C.C. Wang and C.S. Smith:TMS-AIME, 1950, vol. 188, p. 136.

    CAS  Google Scholar 

  18. R.T. Southin and G.A. Chadwick:Acta Metall., 1978, vol. 26, p. 223.

    Article  CAS  Google Scholar 

  19. P.G. Boswell and G.A. Chadwick:Acta Metall., 1980, vol. 28, p. 209.

    Article  CAS  Google Scholar 

  20. P.G. Boswell, G.A. Chadwick, R. Elliott, and F.R. Sale: inSolidification and Casting of Metals, Metals Society, London, 1979, p. 611.

    Google Scholar 

  21. K.I. Moore, D.L. Zhang, and B. Cantor:Acta Metall., 1990, vol. 38, p. 1327.

    Article  CAS  Google Scholar 

  22. D.L. Zhang, K. Chattopadhyay, and B. Cantor:J. Mater. Sci., 1991, vol. 26, p. 1531.

    Article  CAS  Google Scholar 

  23. D.L. Zhang and B. Cantor:Phil. Mag., 1990, vol. A62, p. 557.

    Google Scholar 

  24. W.T. Kim and B. Cantor:J. Mater. Sci., 1991, vol. 26, p. 2868.

    Article  CAS  Google Scholar 

  25. D.L. Zhang and B. Cantor:Mater. Sci. Eng., 1990, vol. A128, p. 209.

    CAS  Google Scholar 

  26. D.L. Zhang and B. Cantor:J. Cryst. Growth, 1990, vol. 104, p. 583.

    Article  CAS  Google Scholar 

  27. W.T. Kim and B. Cantor: Oxford University, Oxford, unpublished research, 1990.

  28. W.T. Kim, B. Cantor, R. Goswami, and K. Chattopadhyay: Oxford University, Oxford, unpublished research, 1991.

  29. T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker:Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1986.

    Google Scholar 

  30. J.W. Christian:The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, 1975.

    Google Scholar 

  31. D. Turnbull:J. Appl. Phys., 1950, vol. 21, p. 1022.

    Article  CAS  Google Scholar 

  32. B. Cantor and R.D. Doherty:Acta Metall., 1979, vol. 27, p. 33.

    Article  CAS  Google Scholar 

  33. W.T. Kim and B. Cantor: Oxford University, Oxford, unpublished research, 1990.

  34. C.J. Coombes:J. Phys. F, 1972, vol. 2, p. 441.

    Article  CAS  Google Scholar 

  35. V.P. Skripov, V.P. Koverda, and V.N. Skokov:Phys. Status Solidi, 1981, vol. 66, p. 109.

    Article  CAS  Google Scholar 

  36. D.L. Zhang, W.T. Kim, and B. Cantor: Oxford University, Oxford, unpublished research, 1990.

  37. H. Saka, Y. Nishikawa, and T. Imura:Phil. Mag. A, 1988, vol. 57, p. 895.

    Article  CAS  Google Scholar 

  38. D.R.H. Jones and G.A. Chadwick:Phil. Mag., 1971, vol. 24, p. 1327.

    Article  CAS  Google Scholar 

  39. E.A. Brandes and C.J. Smithells:Metals Reference Handbook, 6th ed., Butterworth’s, 1983.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, W.T., Zhang, D.L. & Cantor, B. Nucleation of solidification in liquid droplets. Metall Trans A 22, 2487–2501 (1991). https://doi.org/10.1007/BF02665015

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665015

Keywords

Navigation