Skip to main content
Log in

Proliferation of a highly androgen-sensitive ductus deferens cell line (DDT1MF-2) is regulated by glucocorticoids and modulated by growth on collagen

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Proliferation of the hamster ductus deferens cloned tumor cell line (DDT1MF-2) in monolayer culture is markedly stimulated by androgens in a dose dependent fashion. Furthermore, growth on collagen confers upon these cells a greater dependence on this class of hormones, such that testosterone (10 nM) induces a 15-fold elevation in cell number compared to controls. Addition of either dexamethasone (10 nM) or triamcinolone acetonide (TA; 10 nM) dramatically blocks this stimulation by reversibly arresting the cells in the G1 phase of the cell cycle as assessed by flow cell cytometry. Associated with the decreased growth rate is a change from a rounded to a more flattened morphology that may also implicate cell shape in the regulation of proliferation.

These steroid effects presumably are mediated through specific receptor proteins for which dihydrotestosterone (DHT) and TA bind with equilibrium dissociation constants (Kd) of 0.3 and 1.0 nM, respectively. Moreover, not only do androgens increase growth rate but treatment with 1 nM [3H]DHT also results in an elevation in androgen receptor concentration from 1.6 to 3.6 f mol/μg DNA in 7 h. Simultaneous treatment with 10 nM TA, however, reduces this increase by 53%. Inasmuch as neither progesterone nor estradiol-17β display similar inhibitory activity, this effect also seems to be glucocorticoid specific. These observations may be important in elucidating the mechanism of androgen action and should provide some insight into the role of glucocorticoids in regulating the growth of androgen dependent tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Syms, A. J.; Harper, M. E.; Battersby, S.; Giffiths, K., Proliferation of human prostatic epithelial cells in culture: Aspects of identification. J. Urol. 127:501–507;1982.

    Google Scholar 

  2. Webber, M. M. Growth and maintenance of normal prostatic epithelium in vitro—a human cell model. Murphy, G. P. ed. Models for prostate cancer. New York, NY: Alan R. Liss, Inc.; 1980: 181–216.

    Google Scholar 

  3. King, R. J. B.; Cambray, G. J. Jagus-Smith, R.; Robinson, J. H.; Smith, J. A. Steroid hormones and the control of tumor growth: Studies on androgen-responsive tumor cells in culture. Pasqualini, J. R. ed. Receptors and mechanisms of action of steroid hormones. New York, NY: Marcel Dekker, Inc.; 1976:215–260.

    Google Scholar 

  4. Norris, J. S.; Gorski, J.; Kohler, P. O. Androgen receptors in a Syrian hamster ductus deferens tumour cell line. Nature 248:422–424;1974.

    Article  PubMed  CAS  Google Scholar 

  5. Norris, J. S.; Kohler, P. O. Characterization of the androgen receptor from a Syrian hamster ductus deferens tumor cell line (DDT1) Science 192: 898–900; 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Norris, J. S.; Kohler, P. O. The co-existence of androgen and glucocorticoid receptors in the DDT1 cloned cell line. Endocrinology 100: 613–618; 1977.

    Article  PubMed  CAS  Google Scholar 

  7. Norris, J. S.; Kohler, P. O. Hormone-responsive ductus deferens cancer cells in culture. Thompson, E. B.; Lippman, M. E. eds. Steroid receptors and cancer management. Vol. II. Boca Raton, FL: CRC Press; 1979: 59–73.

    Google Scholar 

  8. Yates, J.; King, R. J. B. Correlation of growth properties and morphology with hormone responsiveness of mammary tumor cells in culture. Cancer Res. 41:258–262; 1981.

    PubMed  CAS  Google Scholar 

  9. Gospodarowicz, D.; Fujii, D. K.; Gigvere, L.; Saviou, N.; Tanker, J. P.; Vlodovsky, I. The role of the basal lamina in cell attachment, proliferation and differentiation. Tumor cells vs. normal cells. Murphy, G. P.; Sandberg, A. A.; Karr, J. P. eds. The prostate cell: structure and function. New York, NY: Alan R. Liss, Inc.; 1981:95–132.

    Google Scholar 

  10. Gospodarowicz, D.; Greenburg, G.; Birchwell, C. R. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res. 38: 4155–4171; 1978.

    PubMed  CAS  Google Scholar 

  11. Cidlowski, J. A.; Michaels, G. A. Alteration in glucocorticoid binding site number during the cell cycle. Nature 266:643–645;1977.

    Article  PubMed  CAS  Google Scholar 

  12. Cidlowski, J. A.; Cidlowski, N. B. Glucocorticoid receptors and the cell cycle: Evidence that the accumulation of glucocorticoid receptors during the S-phase of the cell cycle is dependent on ribonucleic acid and protein synthesis. Endocrinology 110(5):1653–1662; 1982.

    PubMed  CAS  Google Scholar 

  13. Currie, R. A.; Cidlowski, J. A. Identification of modified forms of human glucocorticoid receptors during the cell cycle. Endocrinology 110(6): 2192–2194; 1982.

    PubMed  CAS  Google Scholar 

  14. Vindelov, L. Flow microfluorometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. Virchows Arch. [Cell Path.] 24: 227–242; 1977.

    CAS  Google Scholar 

  15. Gray, J. W.; Dean, P. N.; Mendelsohn, M. L. Quantitative cell-cycle analysis. Melamed, M. R.; Mullaney, P. F.; Mendelsohn, M. L. eds. Flow cytometry and sorting. New York, NY: John Wiley and Sons; 1979:383–407.

    Google Scholar 

  16. Burton, K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62:315–323; 1956.

    PubMed  CAS  Google Scholar 

  17. Giles, K. W.; Myers, A. An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature 206:93;1965.

    Article  CAS  Google Scholar 

  18. Sestili, M. A.; Norris, J. S.; Lipshultz, L. I.; Smith, R. G. Dunning adenocarcinoma in tissue culture: Isolation of a cloned cell line, R3327H-G8-A1. J. Urol. 172:823–825;1982.

    Google Scholar 

  19. Sestili, M. A.; Norris, J. S.; Smith, R. G. Isolation and characterization of a cloned cell line R3327H-G8-A1 derived from the Dunning R3327H rat adenocarcinoma. Cancer Res. 43: 2167–2175; 1983.

    PubMed  CAS  Google Scholar 

  20. Yates, J.; King, R. J. B. Multiple sensitivities of mammary tumor cells in culture. Cancer Res. 38: 4135–4137; 1978.

    PubMed  CAS  Google Scholar 

  21. Bakke, O.; Eik-Nes, K. B. Cell cycle specific glucocorticoid growth regulation of a human cell line (NHIK 3025). J. Cell Physiol. 109:489–496; 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Ballard, P. L.; Tomkins, G. M. Hormone induced modification of the cell surface. Nature 224: 344–345; 1969.

    Article  PubMed  CAS  Google Scholar 

  23. Dougherty, T. F.; White, A. Functional alterations in lymphoid tissue induced by adrenal cortical secretion. Am. J. Anat. 77:81–116; 1945.

    Article  Google Scholar 

  24. Ostgaard, K.; Wike, E.; Lindmo, T.; Eik-Nes, K. B. Effects of steroids and different culture media on cell cycle of the androgen-sensitive human cell line NHIK 3025. J. Cell Sci. 48: 281–290; 1981.

    PubMed  CAS  Google Scholar 

  25. Nordeen, S. K.; Young, D. A. Glucocorticoid action on rat thymic lymphocytes. J. Biol. Chem. 251:7295–7303; 1976.

    PubMed  CAS  Google Scholar 

  26. Bakke, O.; Eik-Nes, K. B. Structure requirements for glucocorticoid growth inhibition of a human cell line (NHIK 3025). J. Steroid Biochem. 17: 489–493; 1982.

    Article  PubMed  CAS  Google Scholar 

  27. Sica, G.; Natoli, C.; Natoli, V.; Jacobeli, S. Multiple hormonal control of mammary tumor growth in culture. Rev. Endocrine-Related Cancer. Suppl.9:37–49; 1981.

    Google Scholar 

  28. Desmond, W. J.; Wolkers, S. J.; Sato, G. Cloned mouse mammary cell lines requiring androgens for growth in culture. Cell 8:79–86; 1976.

    Article  PubMed  CAS  Google Scholar 

  29. Young, D. A.; Nicholson, M. L.; Voris, B. P.; Lyons, R. T. Mechanisms involved in the generation of the metabolic and lethal actions of glucocorticoid hormones in lymphoid cells. Iacobelli, S.; King, R. J. B.; Linder, H. R.; Lippman, M. E., eds. Hormones and cancer. New York, NY: Raven Press; 1980: 135–156.

    Google Scholar 

  30. Smith, J. A. The cell cycle and related concepts in cell proliferation. J. Pathol. 136:149–166; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by Grant R01 CA 36264 from the National Institutes of Health, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syms, A.J., Norris, J.S. & Smith, R.G. Proliferation of a highly androgen-sensitive ductus deferens cell line (DDT1MF-2) is regulated by glucocorticoids and modulated by growth on collagen. In Vitro 19, 929–936 (1983). https://doi.org/10.1007/BF02661714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661714

Key words

Navigation