Skip to main content
Log in

Si- and Mg-implanted InP, GaInAs and short-time proximity cap annealing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Si- and Mg-ions with energies of 180 keV have been implanted into semi-insulating InP substrates and low doped n- and p-type GalnAs epitaxial layers (3 · l016cm−3). Sheet resistances and doping profiles are analyzed and compared with LSS theory. Post-implantation annealing is studied with respect to encapsulation, time and temperature. We have tested as new encapsulation techniques for InP the simple proximity cap annealing and for GalnAs the As-doped spun-on SiO2. Proximity cap annealing yields decomposition-free surfaces when using a recessed capsubstrate. At annealing temperatures of around 800 °C less activation is obtained than with conventional PSG annealing and a surface accumulation of charge-carriers is established. A time limit of around 3 min is found for Si- and Mg-implanted InP, beyond which the sheet resistance no longer decreases and the doping saturates. For Si in InP, short-time annealing yields to a 68 % activation of carriers, not significantly higher than with conventional long-time annealing. In the case of Si in GalnAs, however, short-time annealing is much more effective. A 100 % activation is obtained for a dose of 2.1014 cm−2, while only 7 % is found for long annealing. Even at such a high dose of 1. 1016cm−2 we have achieved about an order of magnitude higher activation with short annealing than with long annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.P. Pearsall, IEEE J. Quantum Electron. QE-16 (1980), 709.

    Article  Google Scholar 

  2. H. Kanbe, J.C. Vlcek, and C.G. Fonstad, IEEE Electron Device Lett.EDL-5 (1984), 172.

    CAS  Google Scholar 

  3. N. Arnold, R. Schmitt, and K. Heime, J. Phys. D. Appl. Phys.17 (1984), 443.

    Article  CAS  Google Scholar 

  4. R.C. Eden and B.M. Welch, in “VLSI Electronics: Microstructure Science”, vol. 3 (1982), 109 Academic Press.

  5. N. Bar-Chaim, J. Ury, and A. Yariv, IEEE Spectrum, May (1982), 38.

  6. D.E. Davies, J. Cryst. Growth54 (1981), 150.

    Article  CAS  Google Scholar 

  7. N.J. Slater, A.N.M.M. Choudhury, K. Tabatabaie Alavi, W. Rowe, C.G. Fonstad, K. Alavi, and A.Y. Cho, “Gallium Arsenide and Related Compounds” Inst.Phys.Conf. Ser.No. 65, Chapter 7 (1982), 627.

  8. M. Kuisl, in BMFT Report No FB-T82-052 (1982).

  9. R.P. Mandai and W.R. Scable, “Gallium Arsenide and Related Compounds 1978”, Inst. Conf. Ser. No. 45, Chapter 6 (1979), 462.

  10. H. Jorke, Conference Bellinzona 1984, unpublished.

  11. A.K. Chin, B.V. Dutt, H. Temkin, W.A. Bonner, and D.D. Roccasecca, Appl. Phys. Lett.36 (1980), 924.

    Article  CAS  Google Scholar 

  12. L.A. Christel and J.F. Gibbons, J. Appl. Phys. 52 (1981), 5050.

    Article  CAS  Google Scholar 

  13. R.L. Chapman, J. C. C. Fan, J.P. Donnelly, and B.Y. Tsaur, Appl. Phys. Lett.40 (1982), 805.

    Article  CAS  Google Scholar 

  14. H. Kanber, R.J. Cipolli, and W.B. Henderson, presented at Electronic Materials Conf., Santa Barbara CA (1984), paper L3.

  15. J.P. Donnelly and CE. Hurwitz, Solid-State Electron. 23 (1980), 943.

    Article  CAS  Google Scholar 

  16. D. Kirilov, J.L. Merz, R. Kalish, and A. Ron Appl. Phys. Lett.44 (1984), 609.

    Article  Google Scholar 

  17. J.F. Gibbons, W.J. Johnson, and S.W. Mylroie, Projected Range Statistics, Halsted Press (1975).

  18. T. Nishioka and Y. Ohmachi, J. Appl. Phys.51 (1980), 5789.

    Article  CAS  Google Scholar 

  19. J.P. Donnelly and G.A. Ferrante, Solid-State Electron.23 (1980), 1151.

    Article  CAS  Google Scholar 

  20. E. Kuphal and D. Fritzsche, J. Electron. Mater.12 (1983), 743.

    CAS  Google Scholar 

  21. H. Beneking, N. Grote, and J. Selders, J. Cryst. Growth54 (1981), 59.

    Article  CAS  Google Scholar 

  22. A.N.M.M. Choudhury, N.J. Slater, K. Tabatabaie Alavi, and C.G. Fonstod, Appl. Phys. Lett.40 (1982) 607.

    Article  CAS  Google Scholar 

  23. B. Tell, R.F. Leheny, A.S.H. Liao, T.J. Bridges, E.G. Burkhardt, T.Y. Chang, and E.D. Beebe, Appl. Phys. Lett.44 (1984), 438.

    Article  CAS  Google Scholar 

  24. T. Penna, B. Tell, A.S.H. Liao, T.J. Bridges, and E.G. Burkhardt, presented at Electronic Materials Conf., Santa Barbara (1984), paper L-2.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, U., Hilgarth, J. & Tiemann, H.H. Si- and Mg-implanted InP, GaInAs and short-time proximity cap annealing. J. Electron. Mater. 14, 311–327 (1985). https://doi.org/10.1007/BF02661225

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661225

Key words

Navigation