Skip to main content
Log in

Carbothermic reduction of silicon dioxide— a thermodynamic investigation

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The carbothermic reduction of silicon dioxide at high temperature was studied using a free energy minimization (FEM) program. The stability boundaries of Si(l), SiC(s), and SiO2(l), and the equilibrium compositions of the gaseous species at various pressures, temperatures, and total composition of the system have been calculated based on available thermodynamic data. At 101.325 kPa total pressure, formation of Si(l) is possible if the initial C/SiO2 ratio in the system is kept between 1 and 2.34. Above this ratio, only SiC(s) is observed. The temperature range over which only Si(l) is present in the condensed phase depends on the composition and pressure of the system. For example, at an initial C/SiO2 ratio of 1.75 and 101.325 kPa pressure, Si(l) is stable from 3080 K to 2813 K, below which SiC(s) begins to form. The possibility of producing elemental silicon using carbothermic reduction of SiO2 in a plasma reactor is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. J. Moore, K. J. Reid, and J. K. Tylko:J. Met., 1981, vol. 33(8), pp. 43–49.

    CAS  Google Scholar 

  2. C. B. Alcock:Pure Appl. Chem., 1980, vol. 52, pp. 1817–27.

    Article  CAS  Google Scholar 

  3. J. K. Tylko, J. J. Moore, and K. J. Reid:Proceedings of Extraction Metallurgy ’81, International Conference of the Institute of Mining and Metallurgy, London, England, Sept. 1981, pp. 377–417.

  4. L. A. Ettlinger, T. D. Nainan, R. P. Ouellette, and P. N. Cheremisinoff:High-Temperature Plasma Technology Applications, Ann Arbor Science Publishers, Inc., Ann Arbor, MI, 1980, ch. 1–2.

    Google Scholar 

  5. L. M. Naphtali:Ind. Eng. Chem., 1961, vol. 53(5), pp. 387–88.

    Article  CAS  Google Scholar 

  6. R. C. Oliver, S. E. Stephanou, and R.W. Baier:Chem. Eng., 1962, Feb. 19, pp. 121–28.

  7. R. G. Anthony and D. M. Himmelblau:J. Phys. Chem., 1963, vol. 67, pp. 1080–83.

    Article  CAS  Google Scholar 

  8. B. George, L. P. Brown, C. H. Farmer, P. Buthod, and F. S. Manning:Ind. Eng. Chem., Process Des. Dev., 1976, vol. 15, pp. 372–77.

    Article  CAS  Google Scholar 

  9. A. M. Kuhlmann: U. S. Patent 3, 215, 522, 1965.

    Google Scholar 

  10. W. T. Fairchild:J. Met., 1970, vol. 22(8), pp. 55–58.

    CAS  Google Scholar 

  11. A. Gosh and G. R. St. Pierre:Trans. TMS-AIME, 1969, vol. 245, pp. 2106–08.

    Google Scholar 

  12. W. A. Krivsky and R. Schuhmann, Jr.:Trans. TMS-AIME, 1961, vol. 221, pp. 898–904.

    CAS  Google Scholar 

  13. G. Eriksson and T. Johansson:Scand. J. Metall., 1978, vol. 7, pp. 264–70.

    CAS  Google Scholar 

  14. G. Eriksson and T. Johansson:Scand. J. Metall., 1980, vol. 9, pp. 283–91.

    Google Scholar 

  15. T. Johansson and G. Eriksson:J. Electrochem. Soc., 1984, vol. 131, pp. 365–70.

    Article  CAS  Google Scholar 

  16. E. T. Turkdogan, G. J. W. Kor, and R. J. Fruehan:Ironmaking Steel-making, 1980, no. 6, pp. 268–80.

    Google Scholar 

  17. M. Nagamori, I. Malinsky, and A. Claveau:Metall. Trans. B, 1986, vol. 17B, pp. 503–14.

    Article  ADS  Google Scholar 

  18. T. Rosenqvist and J. K. R. Tuset:Metall. Trans. B, 1987, vol. 18B, pp. 471–72.

    Article  ADS  CAS  Google Scholar 

  19. M. Nagamori, I. Malinsky, and A. Claveau:Metall. Trans. B, 1987, vol. 18B, pp. 472–77.

    Article  ADS  CAS  Google Scholar 

  20. E. K. Stanley:Electr. Furn. Conf. Proc., 1984, vol. 42, pp. 151–55.

    Google Scholar 

  21. S. Gordon and B. J. McBride: NASA SP273, NASA-Lewis, Cleveland, OH, 1971.

  22. JANAF Thermochemical Tables: U.S. Government Doc. No. NSRDS-NBS 37, 2nd ed., 1971; supplements inJ. Phys. Chem. Ref. Data: 1974, vol.’ 3(2); 1975, vol. 4(1); 1978, vol. 7(3); 1982, vol. 11(3).

  23. O. Kubaschewski and C. B. Alcock:Metallurgical Thermochemistry, 5th ed., Pergamon Press, New York, NY, 1979, pp. 221–25.

    Google Scholar 

  24. A. Schei and K. Larsen:Electr. Furn. Conf. Proc., 1981 (Pub. 1982), vol. 39, pp. 301–09.

  25. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley:Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973, p. 879.

    Google Scholar 

  26. J. A. Batdorf, B. A. Detering, and C. M. Wai: EG&G Idaho, Inc., Idaho Falls, ID, and University of Idaho, Moscow, ID, unpublished research, 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchison, S.G., Richardson, L.S. & Wai, C.M. Carbothermic reduction of silicon dioxide— a thermodynamic investigation. Metall Trans B 19, 249–253 (1988). https://doi.org/10.1007/BF02654209

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654209

Keywords

Navigation