Skip to main content
Log in

An assessment of the additivity principle in predicting continuous-cooling austenite-to-pearlite transformation kinetics using isothermal transformation data

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The limits of applicability of the Additivity Principle, necessary for the prediction of continuous-cooling transformation kinetics from isothermal transformation data, are clarified based on an analysis of recently measured austenite-to-pearlite transformation kinetics in a eutectoid, plain-carbon steel. It has been found that additivity holds for the transformation event, exclusive of the incubation period, in this steel. But the isokinetic condition defined by Avrami, and the early site-saturation criteria postulated by Cahn as sufficient conditions for additivity are not satisfied. Thus a new condition, termed “effective site saturation”, is proposed in which the growth of pearlite nucleated early in the transformation dominates the overall kinetics of austenite decomposition. A criterion for effective site saturation has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Kinetic parameter from Avrami equation

d :

Austenite grain diameter (mm)

f 1(t 1):

Fraction transformed in timet 1

f 2(t 2):

Fraction transformed in timet 2

G :

Pearlite growth rate, (mm/s)

G(x) :

Parameter that is solely a function of fraction transformed

H(T) :

Parameter that is solely a function of temperature

L :

Average length of the grain edge, mm

N :

Pearlite nucleation rate (no. nodules/mm3 s)

N c :

Grain corner nucleation rate

N e :

Grain edge nucleation rate

N s :

Grain surface nucleation rate

n :

Kinetic parameter from Avrami equation

t :

Time (s)

t Av :

Designation of start time for transformation

t a1 :

Time required to produce a given fraction transformed atT 1 (s)

t a1 :

Time required to produce a given fraction transformed toT 2 (s)

t a (T):

Isothermal time to reach fractionX a at temperatureT

t 0.5 :

Isothermal time to produce 0.5 volume fraction transformed

t 20 :

Isothermal time to 20 pct transformed—includes incubation time,i.e., t = 0 atT a1

t 90 :

Isothermal time to 90 pct transformed—includes incubation time,i.e., t = 0 atT a1

t 20T :

Isothermal time to 20 pct transformed—only transformation time,i.e., t = 0 att> a1

t 90T :

Isothermal time to 90 pct transformed—only transformation time,i.e., t = 0 att Av

V 20 :

Volume contribution at 90 pct transformed of nodules nucleated in the first 20 pct of the transformation

V 90 :

Volume present at 90 pct transformation

V Ex :

Extended volume fraction, neglects impingement

V Tr :

True volume fraction—extended volume fraction corrected for impingement

X :

Fraction transformed

References

  1. Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park, OH, 1977.

  2. Metal Progress Databook, American Society for Metals, Metals Park, OH, 1985.

  3. Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Co., Greenwich, CT, 1972.

  4. M. Atkins:Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, American Society for Metals, Metals Park, OH, 1980.

    Google Scholar 

  5. R. Blondeau, P. H. Maynier, J. Dollet, and B. Veillard-Baran:Proceedings of the 16th International, Heat Treating Conference, Heat Treatment ’76, 1976, pp. 189–200.

  6. J.S. Kirkaldy:Metall. Trans., 1973, vol. 4, pp. 2327–33.

    Article  CAS  Google Scholar 

  7. J. S. Kirkaldy, B. A. Thomson, and E. A. Baganis:Sym. Proceedings Hardenability Concepts with Application to Steel, AIME, 1978, pp. 82–125.

  8. M. Umemoto, N. Komatsubara, and I. Tamura:J. Heat Treating, 1980, vol. l, No. 3, pp. 57–64.

    Google Scholar 

  9. M. Umemoto, N. Nishioka, and I. Tamura:J. Heat Treating, 1981, vol. 2, No. 2, pp. 130–38.

    Google Scholar 

  10. E. Scheil:Archiv. Eisenhüttenwesen, 1935, vol. 8, pp. 565–67.

    CAS  Google Scholar 

  11. E. B. Hawbolt, B. Chau, and J. K. Brimacombe:Metall. Trans. A, 1983, vol. 14A, pp. 1803–15.

    CAS  Google Scholar 

  12. E. Scheil and A. Lange-Weise:Statistische Ge fugeuntersuchungern, 1937-38, vol. 2, p. 93.

    Google Scholar 

  13. D. Brown and N. Ridley:J.I.S.I., 1966, vol. 204, pp. 811–16.

    CAS  Google Scholar 

  14. D. Brown and N. Ridley:J.I.S.I., 1969, vol. 207, pp. 1232–40.

    CAS  Google Scholar 

  15. F.C. Hull, R.A. Colton, and R. F. Mehl:Trans. AIME, 1942, vol. 150, pp. 185–206.

    Google Scholar 

  16. M. Avrami:J. Chem. Phys., 1939, vol. 7, pp. 1103–12; 1940, vol. 8, pp. 212-24; 1941, vol. 9, pp. 177-84.

    Article  CAS  Google Scholar 

  17. J. E. Dorn, E. D. DeGarmo, and A. E. Flanigan:Trans. A.S.M., 1941, pp. 1022–36.

  18. J. W. Cahn:Acta Metall., Sept. 1956, vol. 4, p. 449.

    Article  CAS  Google Scholar 

  19. R.F. Mehl:Trans. A.S.M., 1941, pp. 813–62.

  20. J. W. Christian:The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, 1965, p. 21, pp. 471-95.

    Google Scholar 

  21. I. J. Rajagopalan: “Mathematical Modelling of Phase Transformations in a Plain Carbon Eutectoid Steel,” M.A.Sc. Thesis, The University of British Columbia, Vancouver, BC, 1983.

    Google Scholar 

  22. M. Umemoto, K. Horiuchi, and I. Tamura:Trans. I.S.I.J., 1982, vol. 22, pp. 854–61.

    Google Scholar 

  23. M. B. Kuban: “Kinetics of Nucleation and Growth in a Eutectoid Plain Carbon Steel,” M.A.Sc. Thesis, The University of British Columbia, Vancouver, BC, 1983.

    Google Scholar 

  24. P.K. Agarwal and J.K. Brimacombe:Metall. Trans. B, 1981, vol. 12B, pp. 121–33.

    CAS  Google Scholar 

  25. D. Sieurin and A.A. Jalie:The Versatile Stelmor Process—Three Systems for Controlled Cooling of Wire Rod, Morgan, Worcester, 1978.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuban, M.B., Jayaraman, R., Hawbolt, E.B. et al. An assessment of the additivity principle in predicting continuous-cooling austenite-to-pearlite transformation kinetics using isothermal transformation data. Metall Trans A 17, 1493–1503 (1986). https://doi.org/10.1007/BF02650085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650085

Keywords

Navigation