Skip to main content
Log in

The kinetics of the internal nitriding of Fe-2 at. pct Al alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The kinetics of the precipitation of aluminum nitride on internal nitriding the Fe-2 at. pct Al alloy was investigated for cold-rolled and recrystallized specimens exhibiting “ideally weak” interaction behavior of the solutes Al and N. The kinetic analysis was performed using mass-increase data obtained for thin foils (thickness ⪯0.1 mm) upon nitriding in a NH3/H2 gas mixture at temperatures in the range 803 to 853 K. Activation-energy analysis revealed that precipitation of AlN in the recrystallized specimens is associated with a Gibbs free energy barrier for the formation of a precipitate of critical size; the precipitation rate is controlled by both nucleation and growth. On the other hand, precipitation of AlN in the cold-rolled specimens occurs without a Gibbs free energy barrier for formation of a precipitate of critical size; the precipitation rate is controlled by growth with kinetics governed by volume diffusion of alu-minum. Analysis of the total Gibbs free energy of formation of AlN in the α-Fe matrix showed that in the case of the recrystallized specimens, the formation of incoherent AlN precipitates with a hexagonal crystal structure is favored. In the case of the cold-rolled specimens, containing a high dislocation density, the formation of coherent AlN precipitates with cubic crystal structure is favored, at least in the beginning of precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Mittemeijer: inCase-Hardened Steels: Microstructural and Residual Stress Effects, D.E. Diesburg, ed., TMS-AIME, Warrendale, PA, 1984, p. 161;HÄrterei-Technol. Mitt., 1984, vol. 39, p. 16.

    Google Scholar 

  2. K. Bohnenkamp:Arch. Eisenhüttenwes., 1967, vol. 38, p. 433.

    CAS  Google Scholar 

  3. H.H. Podgurski and H.E. Knechtel:Trans. AIME, 1969, vol. 245, p. 1595.

    CAS  Google Scholar 

  4. H.H. Podgurski, R.A. Oriani, and F.N. Davis:Trans. AIME, 1969, vol. 245, p. 1603.

    CAS  Google Scholar 

  5. M.H. Biglari, C.M. Brakman, M.A.J. Somers, W.G. Sloof, and E.J. Mittemeijer:Z. Metallkd., 1993, vol. 84, p. 124.

    CAS  Google Scholar 

  6. E.T. Turkdogan and S. Ignatowicz:J. Iron Steel Inst., 1958, vol. 188, p. 242.

    CAS  Google Scholar 

  7. B.J. Lightfoot and D.H. Jack:Proc. Heat Treatment, The Metals Society, London, 1973, p. 59.

    Google Scholar 

  8. J.R. Atanasova:HÄrterei-Technol. Mitt., 1976, vol. 31, p. 325.

    CAS  Google Scholar 

  9. R.E.E. Pulkkinen:Met. Sci., 1982, vol. 16, p. 37.

    Article  CAS  Google Scholar 

  10. R.E.E. Pulkkinen:Scan. J. Metall., 1983, vol. 12, p. 87.

    CAS  Google Scholar 

  11. P.M. Hekker, H.C.F. Rozendaal, and E.J. Mittemeijer:J. Mater. Sci., 1985, vol. 20, p. 718.

    Article  CAS  Google Scholar 

  12. P.C. van Wiggen, H.C.F. Rozendaal, and E.J. Mittemeijer:J. Mater. Sci., 1985, vol. 20, p. 4561.

    Article  Google Scholar 

  13. K. Kawamura:J. Jpn. Inst. Met., 1960, vol. 24, p. 710.

    CAS  Google Scholar 

  14. M.A.J. Somers, N.M. van der Pers, D. Schalkoord, and E.J. Mittemeijer:Metall. Trans. A, 1989, vol. 20A, pp. 1533–39.

    CAS  Google Scholar 

  15. J.W. Christian:The Theory of Transformations in Metals and Alloys, 2nd ed. Pergamon Press, Oxford, 1975.

    Google Scholar 

  16. M.H. Biglari, C.M. Brakman, E.J. Mittemeijer, and S. van der Zwaag: Delft University of Technology, unpublished research, 1994.

  17. E.J. Mittemeijer:J. Mater. Sci., 1992, vol. 27, p. 3977.

    Article  CAS  Google Scholar 

  18. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling:Numerical Recipes, Cambridge University Press, New York, NY, 1987, p. 289.

    Google Scholar 

  19. R.M. Lankreijer, M.A.J. Somers, and E.J. Mittemeijer:Proc. Int. Conf. on High Nitrogen Steels, Lille, May 18–20, 1988, J. Foct and A. Hendry, eds., The Institute of Metals, London, 1989, p. 108.

    Google Scholar 

  20. R. Gomez-Ramirez: Ph.D. Thesis, Stanford University, Stanford, CA, 1971.

    Google Scholar 

  21. R. Gomez-Ramirez and G.M. Pound:Metall. Trans. A, 1973, vol. 4A, pp. 1563–70.

    Google Scholar 

  22. M. Gemmaz, M. Afyouni, and A. Mosser:Surf. Sci. Lett., 1990, vol. 227, p. L109.

    Article  CAS  Google Scholar 

  23. G.A. Jeffrey and V.Y. Wu:Acta Crystallogr., 1963, vol. 16, p. 559.

    Article  CAS  Google Scholar 

  24. S. Hanai, N. Takemoto, and Y. Mizuyama:Trans. Iron Steel Inst. Jpn., 1971, vol. 11, p. 24.

    CAS  Google Scholar 

  25. T. Utigard:Z. Metallkd., 1993, vol. 84, p. 792.

    CAS  Google Scholar 

  26. D.A. Porter and K.E. Easterling:Phase Transformation in Metals and Alloys, Van Nostrand Reinhold, London, 1989.

    Google Scholar 

  27. F.C. Larche: inDislocations in Solids, F.R.N. Nabarro, ed., North-Holland Publishing Co., Amsterdam, 1979, p. 135.

    Google Scholar 

  28. J.W. Cahn:Acta Metall., 1957, vol. 5, p. 169.

    Article  CAS  Google Scholar 

  29. B.Ya. Lyubov and V.A. Solov’Yev:Fiz. Metal. Metalloved., 1965, vol. 19, p. 333.

    CAS  Google Scholar 

  30. C.C. Dollins:Acta Metall., 1970, vol. 18, p. 1209.

    Article  CAS  Google Scholar 

  31. L. Katgerman and J. Van Liere:Acta Metall., 1978, vol. 26, p. 361.

    Article  Google Scholar 

  32. J.P. Hirth and J. Lothe:Theory of Dislocations, MacGraw-Hill, New York, NY, 1968, p. 63.

    Google Scholar 

  33. C.J. Smithells:Metals Reference Book, 5th ed., Butterworths, London, 1976.

    Google Scholar 

  34. M.H. Biglari, C.M. Brakman, E.J. Mittemeijer, and S. van der Zwaag: Delft University of Technology, unpublished research, 1994.

  35. E.J. Mittemeijer and J.T. Slycke:HÄrterei-Technol. Mitt., in press.

  36. I. Barin:Thermochemical Data of Pure Substances, Cambridge University Press, New York, NY, 1989.

    Google Scholar 

  37. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley:Selected Values of the Thermodynamic Properties of Binary Alloys, ASM Metals Park, OH, 1973, p. 162.

    Google Scholar 

  38. F.R.N. Nabarro:Proc. R. Soc., 175, vol. A, 1940, p. 519.

    Article  CAS  Google Scholar 

  39. M.E. Sherwin and T.J. Drummond:J. Appl. Phys., 1991, vol. 69, p. 8423.

    Article  CAS  Google Scholar 

  40. J.F. Nye:Physical Properties of Crystals, Oxford University Press, Oxford, 1989, p. 140.

    Google Scholar 

  41. W.B. Pearson:A Handbook of Lattice Spacings and Structure of Metals, Pergamon Press, London, 1968, vol. II.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biglari, M.H., Brakman, C.M., Mittemeijer, E.J. et al. The kinetics of the internal nitriding of Fe-2 at. pct Al alloy. Metall Mater Trans A 26, 765–776 (1995). https://doi.org/10.1007/BF02649075

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649075

Keywords

Navigation