Skip to main content
Log in

Evolution of interaction domain microstructure during spray deposition

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An interaction domain, defined in the present article as the region where semisolid, atomized droplets impinge and are collected during spray atomization and deposition, was systematically investigated on the basis of a semisolid metal-forming mechanism. Accordingly, microstructural evolution in the interaction domain was rationalized by quantitative analyses of (1) the solid fraction of semisolid metal, (2) the extent of deformation and deformation strain rate, and (3) the solidification cooling rate. The results demonstrate that the fraction of solid in the interaction domain ranges from 0.5 to 0.8 for the materials studied here: Ni3Al, Al-6 wt pct Si, and Al-6 wt pct Fe. Moreover, the results show that the semisolid material in the interaction domain experiences a severe deformation during deposition with an associated strain rate of up to 106 s-1. As a result of this deformation; the solidification structure is modified, and, in particular, any dendritic structure that is present will undergo extensive fragmentation. The severe deformation that is experienced by the interaction domain and the presence of a solidification cooling rate that is on the order of 10 to 105 Ks-1 were proposed to be critical factors that promote the formation of a spheroidal grain morphology during spray atomization and deposition. Experimental support to this suggestion was provided by microstructural observations on Ni3Al, Al-6Si, and Al-6Fe. In particular, the morphological modification of the primary Si phase that is observed in spray-atomized and spray-deposited Al-6Si was rationalized on the basis of these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R.E. Singer:J. Inst. Met., 1972, vol. 100, pp. 185–90.

    CAS  Google Scholar 

  2. R.G. Brooks, G. Coombs, A.G. Leatham, H. Mort, and C. Moore:Mod. Dev. Powder Metall., 1977, vol. 11, pp. 1–12.

    Google Scholar 

  3. E.J. Lavernia:Int. J. Rapid Solidif., 1989, vol. 5, pp. 47–85.

    CAS  Google Scholar 

  4. P. Mathur, S. Annavarapu, D. Apelian, and A. Lawley:JOM, 1989, vol.41(10), pp. 23–28.

    CAS  Google Scholar 

  5. E.J. Lavernia, J.D. Ayers, and T.S. Srivatsan:Int. Mater. Rev., 1992, vol. 37, pp. 1–44.

    CAS  Google Scholar 

  6. M.G. Chu, D.K. Denzer, A.K. Chakrabarti, and F. Billman:Mater. Sci. Eng., 1988, vol. A98, pp. 227–32.

    Google Scholar 

  7. E.J. Lavernia, E. Gomez, and N.J. Grant:Mater. Sci. Eng., 1987, vol. A95, pp. 225–36.

    Google Scholar 

  8. E.J. Lavernia, J. Baram, and E.M. Gutierrez:Mater. Sci. Eng., 1991, vol. A132, pp. 119–33.

    CAS  Google Scholar 

  9. R.H. Bricknell:Metall. Trans. A, 1986, vol. 17A, pp. 583–91.

    ADS  CAS  Google Scholar 

  10. S. Annavarapu, D. Apelian, and A. Lawley:Metall. Trans. A, 1988, vol. 19A, 3077–86.

    ADS  CAS  Google Scholar 

  11. R.P. Singh, A. Lawley, S. Friedman, and Y.V. Nurty:Mater. Sci. Eng., 1991, vol. A145, pp. 243–55.

    CAS  Google Scholar 

  12. D.G. Morris and M.A. Morris:J. Mater. Res., 1991, vol. 6, pp. 361–65.

    Article  ADS  CAS  Google Scholar 

  13. J.M. Sears:Advances in Powder Metallurgy & Particulate Materials, MPIF, Princeton, NJ, 1992, vol. 1, pp. 281–90.

    Google Scholar 

  14. A.R.E. Singer:Mater. Sci. Eng., 1991, vol. 135A, pp. 13–17.

    Google Scholar 

  15. M. Gupta, F.A. Mohamed, and E.J. Lavernia:Metall. Trans. A, 1992, vol. 23A, pp. 831–43.

    ADS  CAS  Google Scholar 

  16. M. Gupta, F.A. Mohamed, and E.J. Lavernia:Mater. Sci. Eng., 1991, vol. 144A, pp. 99–110.

    Google Scholar 

  17. X. Liang and E.J. Lavernia:JOM, 1993, vol. 45 (7), pp. 50–5.

    CAS  Google Scholar 

  18. A.R.E. Singer:Metall. Mater., 1970, vol. 4, pp. 246–50.

    Google Scholar 

  19. A.R.E. Singer:U.K. Patent 1, 262,471, 1972.

  20. A.L. Moran and D.R. White:JOM, 1990, vol. 42 (7), pp. 21–24.

    Google Scholar 

  21. R.G. Brooks, C. Moore, A.G. Leatham, and J.S. Coombs:Powder Metall., 1977, vol. 2, pp. 100–02.

    Google Scholar 

  22. R.W. Evans, A.G. Leatham, and R.G. Brooks:Powder Metall., 1985, vol. 28, pp. 13–20.

    Google Scholar 

  23. A.R.E. Singer:Met. Powder Rep., 1986, vol. 3, pp. 223–26.

    Google Scholar 

  24. R. Tiwari and H. Herman:Scripta Metall. Mater., 1991, vol. 25, pp. 1103–07.

    Article  CAS  Google Scholar 

  25. S. Sampath, R. Tiwari, B. Gudmundsson, and H. Herman:Scripta Metall. Mater., 1991, vol. 25, pp. 1425–30.

    Article  CAS  Google Scholar 

  26. E.J. Lavernia and N.J. Grant:Mater. Sci. Eng., 1988, vol. A98, pp. 381–94.

    Google Scholar 

  27. X. Liang, J.C. Earthman, and E.J. Lavernia:Acta Metall. Mater., 1990, vol. 40, pp. 3003–16.

    Google Scholar 

  28. X. Liang and E.J. Lavernia:Mater. Sci. Eng., 1993, vol. 161A, pp. 221–35.

    Google Scholar 

  29. S. Annavarapu, D. Apelian, and A. Lawley:Metall. Trans. A, 1990, vol. 21A, pp. 3237–56.

    ADS  CAS  Google Scholar 

  30. S. Annavarapu and R.D. Doherty:Int. J. Powder Metall., 1993, vol. 29, pp. 331–43.

    CAS  Google Scholar 

  31. S. Ashok:Int. J. Rapid Solidif., 1993, vol. 7, pp. 283–93.

    CAS  Google Scholar 

  32. N.S. Stoloff:Int. Mater. Rev., 1989, vol. 34 (4), pp. 153–84.

    CAS  Google Scholar 

  33. C.T. Liu and V.K. Sikka:JOM, 1986, vol. 38, pp. 19–21.

    CAS  Google Scholar 

  34. F. Yilmaz and R. Elliott:J. Mater. Sci., 1989, vol. 24, p. 2065.

    Article  CAS  Google Scholar 

  35. F. Yilmaz: Mater. Sci. Eng., 1990, vol. A124, pp. L1–5.

    CAS  Google Scholar 

  36. J. Zhou, J. Duszczyk, and B.M. Korevaar:J. Mater. Sci., 1991, vol. 26, pp. 5275–91.

    Article  CAS  Google Scholar 

  37. W.G.J. Bunk:Mater. Sci. Eng., 1991, vol. A134, pp. 1087–97.

    CAS  Google Scholar 

  38. W.J. Boettinger, L. Bendersky, and J.G. Early:Metall. Trans. A, 1986, vol. 17A, pp. 781–90.

    ADS  CAS  Google Scholar 

  39. R.F. Cochrane, P.V. Evans, and A.L. Greer:Mater. Sci. Eng., 1991, vol. A133, pp. 803–06.

    CAS  Google Scholar 

  40. B.D. Cullity:Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Publishing Co., Inc., Reading, MA, 1978, pp. 447–77.

    Google Scholar 

  41. X. Liang, J.C. Earthman, J. Wolfenstine, and E.J. Lavernia:Mater. Charact., 1992, vol. 28, pp. 173–78.

    Article  CAS  Google Scholar 

  42. X. Liang and E.J. Lavernia:Scripta Metall. Mater., 1991, vol. 25, pp. 1199–204.

    Article  CAS  Google Scholar 

  43. Metals Handbook, vol. 9, Metallography and Microstructures, ASM, Metals Park, OH, 1984, p. 376.

  44. R.N. Grugel:J. Mater. Sci., 1993, vol. 28, pp. 677–83.

    Article  CAS  Google Scholar 

  45. J.L. Estrada and J. Duszczyk:J. Mater. Sci., 1990, vol. 25B, pp. 1381–91.

    Google Scholar 

  46. J. Zhou, J. Duszczyk, and B.M. Korevaar:J. Mater. Sci., 1992, vol. 27, pp. 3341–52.

    Article  CAS  Google Scholar 

  47. L.F. Mondolfo:Aluminum Alloys: Structure and Properties, Butterworth and Co. London, 1976.

    Google Scholar 

  48. M.H. Kim and H. Jones: inRapidly Quenched Metals,T. Masumoto, and H. Suzuki, eds., The Japan Institute of Metals, Sendai, 1982, pp. 85–93.

    Google Scholar 

  49. E.J. Lavernia, E.M. Gutierrez, J. Szekely, and N.J. Grant:Int. J. Rapid Solidif, 1988, vol. 4, pp. 89–124.

    CAS  Google Scholar 

  50. E. Gutierrez-Miravete, E.J. Lavernia, G.M. Trapaga, J. Szekely, and N.J. Grant:Metall. Trans. A, 1989, vol. 20A, pp. 71–85.

    CAS  Google Scholar 

  51. P. Mathur, D. Apelian, and A. Lawley:Acta Metall. Mater., 1989, vol. 37, pp. 429–43.

    Article  CAS  Google Scholar 

  52. P. Mathur, S. Annavarapu, D. Apelian, and A. Lawley:Mater. Sci. Eng., 1991, vol. A142, pp. 261–76.

    CAS  Google Scholar 

  53. B.P. Bewlay and B. Cantor:Metall. Trans. B, 1990, vol. 21B, pp. 899–912.

    Article  ADS  CAS  Google Scholar 

  54. J.O. Medwell, D.T. Gethin, and N. Muhamad:Advances in Powder Metallurgy & Particulate Materials, MPIF, Princeton, NJ, 1992, vol. 1, pp. 249–71.

    Google Scholar 

  55. M.C. Flemings:Metall. Trans. A, 1991, vol. 22A, pp. 957–81.

    ADS  CAS  Google Scholar 

  56. S.A. Metz and M.C. Flemings:Trans. Am. Foundrymen’s Soc, 1969, vol. 77, pp. 329–34.

    Google Scholar 

  57. A. Lawley:Atomization, the Production of Metal Powders, MPIF, Princeton, NJ, 1992.

    Google Scholar 

  58. E.J. Lavernia, T.S. Srivatsan, and R.H. Rangel:Atomiz. and Sprays, 1992, vol. 2, pp. 253–74.

    CAS  Google Scholar 

  59. J.M. Marinkovich, F.A. Mohamed, J.R. Pickens, and E.J. Lavernia:JOM, 1989, vol. 41 (9), pp. 36–41.

    CAS  Google Scholar 

  60. J. Szekely:Fluid Flow Phenomena in Metals Processing, Academic Press, New York, NY, 1979, p. 261.

    Google Scholar 

  61. F. Ruiz and N.A. Chigier:J. Fluids Eng., 1990, vol. 112, pp. 96–106.

    Article  CAS  Google Scholar 

  62. A.H. Lefebvre:J. Eng. Gas Turbines Power, 1992, vol. 114, pp. 89–96.

    Article  CAS  Google Scholar 

  63. C.G. Levi and R. Mehrabian:Metall. Trans. A, 1982, vol. 13A, pp. 221–34.

    ADS  CAS  Google Scholar 

  64. F.P. Incropera and D.P. De Witt:Introduction to Heat Transfer,John Wiley & Sons, New York, NY, 1985.

    Google Scholar 

  65. J. Madejski:Int. J. Heat Mass Transfer, 1976, vol. 19, pp. 1009–13.

    Article  MATH  ADS  Google Scholar 

  66. C. San Marchi, H. Liu, E.J. Lavernia, R.H. Rangel, A. Sickinger, and E. Muehlberger:J. Mater. Sci., 1993, vol. 28, pp. 3313–21.

    Article  Google Scholar 

  67. H. Liu, E.J. Lavernia, and R.H. Rangel:J. Phys. D, 1993, vol. 26, pp. 1–9.

    ADS  Google Scholar 

  68. G.E. Dieter:Mechanical Metallurgy, 3rd ed., McGraw-Hill,New York, NY, 1986, pp. 275–324.

    Google Scholar 

  69. S. Polat, B. Huang, S. Mujumdar, and W.J.M. Douglas: inAnnual Review of Numerical Fluid Mechanics and Heat Transfer,C.L. Tien, and T.C. Chawla, eds., Hemisphere Publishing Corp., New York, NY, 1989, vol. 2, pp. 157–197.

    Google Scholar 

  70. R.J. Goldstein, K.A. Sobolik, and W.S. Seol:J. Heat Transfer., 1990, vol. 112, pp. 608–11.

    Article  CAS  Google Scholar 

  71. R. Gordon and J.C. Akfirat:J. Heat Transfer, 1966, vol. 88, pp. 101–08.

    Google Scholar 

  72. H. Jones: inRapid Solidification Processing, Principles and Technologies, R. Mehrabian, B.H. Kear, and M. Cohen, eds., Baton Rouge, Claitor’s Publishing Division, 1978, pp. 28–45.

    Google Scholar 

  73. C.A. Williams and H. Jones:Mater. Sci. Eng., 1975, vol. 19, pp. 293–97.

    Article  CAS  Google Scholar 

  74. S. Safai and H. Herman:Thin Solid Films, 1977, vol. 45, pp. 295–307.

    Article  ADS  CAS  Google Scholar 

  75. J.A. Sekhar, C.S. Lin, and C.J. Cheng: inNature and Properties of Semi-Solid Materials, J.A. Sekhar and J. Dantzig, eds., TMS, Warrendale, PA, 1991, pp. 267–90.

    Google Scholar 

  76. C.S. Lin and J.A. Sekhar:J. Mater. Sci., 1993, vol. 28, pp. 3581–88.

    Article  CAS  Google Scholar 

  77. C.S. Lin and J.A. Sekhar:J. Mater. Sci., 1993, vol. 28, pp. 3885–94.

    Article  CAS  Google Scholar 

  78. Y. Ito, M.C. Flemings, and J.A. Cornie: inNature and Properties of Semi-Solid Materials, J.A. Sekhar and J. Dantzig,eds., TMS, Warrendale, PA, 1991, pp. 3–17.

    Google Scholar 

  79. H.K. Moon, J.A. Cornie, and M.C. Flemings:Mater. Sci. Eng., 1991, vol. A144, pp. 253–65.

    CAS  Google Scholar 

  80. W.H. Hunt, J.R. Brockenbrough, and P.E. Magnusen:Scripta Metall. Mater., 1991, vol. 25, pp. 15–20.

    Article  CAS  Google Scholar 

  81. J. Zhou and J. Duszczyk:J. Mater. Sci., 1991, vol. 26, pp. 3739–747.

    Article  CAS  Google Scholar 

  82. Y. Wu, E.J. Lavenia, and W.A. Cassada: inInt. Conf. on Advanced Synthesis of Engineered Structural Materials, J.J.Moore, E.J. Lavernia, and F.F. Froes, eds., ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 245–52.

    Google Scholar 

  83. S.N. Ojha, J.N. Jha, and S.N. Singh:Scripta Metall. Mater., 1991, vol. 25, pp. 443–47.

    Article  CAS  Google Scholar 

  84. H. Jones:Phil. Mag. B, 1990, vol. 61, pp. 487–509.

    Article  CAS  Google Scholar 

  85. H. Jones:Rapid Solidification of Metal and Alloys, The Institution of Metallurgists, Northway House, London, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, X., Lavernia, E.J. Evolution of interaction domain microstructure during spray deposition. Metall Mater Trans A 25, 2341–2355 (1994). https://doi.org/10.1007/BF02648855

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648855

Keywords

Navigation