Skip to main content
Log in

Toxicity assessment of paraverine hydrochloride and papaverine-derived metabolites in primary cultures of rat hepatocytes

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

The present study was undertaken to assess and compare the toxic effects of papaverine hydrochloride and its metabolites. Primary cell cultures of rat hepatocytes were treated with papavarine (papaver), 3′-O-desmethyl (3′-OH), 4′-O-desmethyl (4′-OH), and 6-O-desmethyl (6-OH) papaverine at 1×10−5, 1×10−4, and 1×10−3 M for 4,8, 12, and 24-h periods. Cell injury was determined by: a) cell viability using the trypan blue exclusion test; b) cytosolic enzyme leakage of lactate dehydrogenase and aspartate aminotransferase; c) morphologic alterations; and d) lactate: pyruvate (L:P) ratios. Cell cultures showed concentration-and time-dependent responses. For example, a decrease in cell viability and an increase in enzyme leakage were observed after cell treatment with 1×10−4 and 1×10−3 M papaver for 8 h; 1×10−3 M 6-OH papaverine for 8 h and 1×10−4 M for 24 h; and 1×10−3 M 4′-OH papaverine for 24 h (P<0.05). Furthermore, changes in morphology correlated to cell viability and enzyme release in those cultures treated with papaver, 4′-OH and 6-OH papaverine. Some of these changes included size deformation, cell detachment from the dishes, and cell necrosis. On the other hand, an increase in L:P ratios (P<0.05) was detected with papaver as early as 8 h with 1×10−4 and 1×10−3 M and 12 h with 1×10−5 M; 6-OH showed an increase, in L:P ratios at 8 h with 1×10−3 M and 12 h with 1×10−4 M; these changes were evident with 4′-OH at 12 h with 1×10−3 M. In contrast, cells treated with 3′-OH papaverine did not show significant damage with any time period and concentration used in this study. The results of this study indicate that papaverine-derived metabolites are less cytotoxic than its parent compound, papaver. The toxicity was ranked as follows: papaver>6-OH>4′-OH>−3′-OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta, D.; Anuforo, D.; Smith R. V. Preparation of primary monolayer cultures of postnatal rat liver cells. J. Tissue Cult. Methods 6:35–37; 1980.

    Article  CAS  Google Scholar 

  2. Acosta, D.; Anuforo, D.C.; Smith, R. V. Cytotoxicity of acetaminophen and papaverine in primary cultures of rat hepatocytes. Toxicol. Appl. Pharmacol. 53:306–314; 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Acosta, D.; Mitchell, D. B.; Bruckner, J. B. Hepatotoxicity: anin vitro approach to the study of metabolism and toxicity of chemicals and drugs using cultured rat hepatocytes. In: Homburger, E., ed. Safety evaluation and regulation of chemicals 2. Switzerland: Karger; Basel; 1985:305–317.

    Google Scholar 

  4. Acosta, D.; Sorensen, E. M.; Mitchell, D. B., et al. Anin vitro approach to the study of target organ toxicity of drugs and chemicals. In Vitro Cell. Dev. Biol. 21:495–504; 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Acosta, D.; Mitchell, D.B.; Sorensen, E. M. B., et al. The metabolism and toxicity of xenobiotics in a primary culture system of postnatal rat hepatocytes. In: Rauckman, E. J., Padilla, G. M., eds. The isolated hepatocyte. New York: Academic Press; 1987:189–214.

    Google Scholar 

  6. Acosta, D.; Hsieh, C. G.; Davila, J. C., et al. Comparison of papaverine metabolism in culture systems of rat hepatocytes and fungal cells. Toxicologist 9:283; 1989.

    Google Scholar 

  7. Albrecht, T.; Lee, C. H.; Speelman, D. J., et al. Inhibition of cytomegalovirus replication by smooth-muscle relaxant agents. Proc. Soc. Exp. Biol. Med. 186:41–46; 1987.

    PubMed  CAS  Google Scholar 

  8. American Medical Association. Agents used in peripheral and cerebral vascular disorders. In: AMA drug evaluations, 3rd ed. Littleton, MA: PSG Publishing Co. Inc.; 1977.

    Google Scholar 

  9. Axelrod, J.; Shofer, R.; Inscoe, J. K., et al. The fate of papaverine in man and other animals. J. Pharmacol. Exp. Ther. 124:9–15; 1958.

    PubMed  CAS  Google Scholar 

  10. Belpaire, F. M.; Bogaert, M. G.; Rossel, M. T. Metabolism of papaverine I. Identification of metabolites in rat liver. Xenobiotica 5:413–420; 1975.

    PubMed  CAS  Google Scholar 

  11. Belpaire, F. M.; Bogaert, M. G. Metabolism of papaverione II. Species differences. Xenobiotica 5:421–429; 1975.

    PubMed  CAS  Google Scholar 

  12. Belpaire, F. M.; Bogaert, M. G. Metabolism of papaverine III. Effect of phenobarbital, 3-methylcholanthrene and SKF 525-A pre-treatmentin vivo andin vitro. Xenobiotica 5:431–438; 1975.

    PubMed  CAS  Google Scholar 

  13. Belpaire, F. M.; Rossel, M. T.; Bogaert, M. G. Metabolism of papaverine IV. Urinary elimination of papaverine metabolites in man. Xenobiotica 8:297–300; 1978.

    PubMed  CAS  Google Scholar 

  14. Brossi A.; Teitel, S. Selective demethylation of papaverine. J. Org. Chem. 35:1684–1687; 1970.

    Article  PubMed  CAS  Google Scholar 

  15. Browning, E. T.; Groppi, V. E.; Kon, C. Papaverine a potent inhibitor of respiration in 6-C astrocytoma cells. Mol. Pharmacol. 10:175–181; 1973.

    Google Scholar 

  16. Czok, R.; Lamprecht, W. Pyruvate. In: Bergmeyer, H., ed. Methods of enzymatic analysis. New York: Academic Press; 1974:1446–1451.

    Google Scholar 

  17. Davila, J.; Lenherr, A.; Acosta, D. Protective effect of flavonoids on drug-induced hepatotoxicity. Toxicology 57:267–286; 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Driemen, P. M. Papaverine hepatotoxicity or not?. J. Am. Geriatr. Soc. 21:202–205; 1973.

    PubMed  CAS  Google Scholar 

  19. Grisham, J. W.; Smith, G. J. Predictive and mechanistic evaluation of toxic responses in mammalian cell culture systems. Pharmacol. Rev. 36:151S-171S; 1984.

    PubMed  CAS  Google Scholar 

  20. Gutmann I.; Wahlefeld, A.l-(+)-Lactate determination with lactate dehydrogenase and NAD. In: Bergmeyer, H., ed. Methods of enzymatic analysis. New York: Academic Press; 1974:1465–1468.

    Google Scholar 

  21. Guttman, D. E.; Kostenbauder, H. B.; Wilkinson, G. R., et al. GLC determination of papaverine in biological fludis. J. Pharm. Soc. 63: 1625–1626; 1974.

    Article  CAS  Google Scholar 

  22. Kiaer, H. W.; Olsen, S.; Ronnov-Jenssen, V Hepatotoxicity of papaverine. Arch. Pathol. 98:292–296: 1974.

    PubMed  CAS  Google Scholar 

  23. Kowal, J.; Harano, Y. Adrenal cells in tissue culture. The effect of papaverine and amytal onesteroidogenesis, respiration and replication. Arch. Biochem. Biophys. 163:466–475; 1974.

    Article  PubMed  CAS  Google Scholar 

  24. Lee, B. Y.; Sakamoto, H.; Trainor, F. Comparison of soft gelatine capsule vs. sustained release formulation of papaverine HCl: vasodilation of plasma levels. Int. J. Clin. Pharm. 16:32–39; 1978.

    CAS  Google Scholar 

  25. Lehninger, A. L. Molecular basis of cell and function. In: Lehninger, A. L., ed. Biochemistry. New York: Worth Publishers; 1977.

    Google Scholar 

  26. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement from phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  27. Mitchell, D. B.; Santone, K. S.; Acosta, D. Evaluation of cytotoxicity in cultured cells by enzyme leakage. J. Tissue Cult. Methods 6:113–116; 1980.

    Article  CAS  Google Scholar 

  28. Mohomed, Y.; Moorthy, S. S.; Brown, J. W., et al. Injection into coronary artery bypass grafts. Anesthesiology 61:350; 1984.

    Article  Google Scholar 

  29. Needleman, P.; Corr, P. B.; Johnson, E. M. Drugs used for the treatment of angina: organic nitrates, calcium channel blockers, and β adrenergic antagonists. In: Goodman G. A.; Goodman, L. S.; Rall, T. W., et al. Goodman and Gilman's the pharmacological basis of therapeutics, 7th ed. New York: MacMillan Publishing; 1985:806–826.

    Google Scholar 

  30. Poncin, E.; Silvain, C.; Touchard, G., et al. Papaverine-induced chronic liver disease. Gastroenterology 90:1051–1053; 1986.

    PubMed  CAS  Google Scholar 

  31. Ritschel, W.A.; Hammer, G. V. Pharmacokinetics of papaverine in man. Int. J. Clin. Pharmacol. 15:227–229; 1977.

    CAS  Google Scholar 

  32. Rodaman, M. J. R.; Karch, A. M.; Boyd, E. H., et al. Vasodilator drugs for peripheral and cerebral vascular disorders. In: Rodaman, M. J. R.; Karch, A. M.; Boyd, E. H., eds. Pharmacology and drug therapy in nursing, 3rd ed. Philadelphia: J. B. Lippincot Co.; 1985:691–701.

    Google Scholar 

  33. Ronnov-Jenssen, V.; Tjernlund, A. Hepatotoxicity due to treatment with paraverine: report of four cases. N. Engl. J. Med. 281:1333–1335; 1969.

    Article  Google Scholar 

  34. Rosazza, J. P.; Kammer, M.; Youel, L., et al. Microbial models of mammalian metabolism O-demethylations of papative. Xenobiotica 7:133–143; 1977.

    PubMed  CAS  Google Scholar 

  35. Santi R.; Contessa, A. R.; Ferrari, M. Spasmolytic effect of the papaverine and inhibition of the oxidative phosphorilation. Biochem. Biophys. Res. Commun. 11:156–159; 1963.

    Article  PubMed  CAS  Google Scholar 

  36. Santone, K. S.; Acosta, D.; Bruckner, J. V. Cadmium toxicity in primary cultures of rat hepatocytes. J. Toxicol. Environ. Health 10:169–177; 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Tolnai, S. A Method for viable cell count. In: Evans, V. J.; Vincent, M. M., eds. Tissue culture association manual. Rockville, MD: Tissue Culture Association; 1975:37–39.

    Google Scholar 

  38. Turano, A.; Scura, G.; Caruso, A., et al. Inhibitory effect of papaverine on HIV replication in vitro. AIDS Res. Hum. Retroviruses 5:183–192; 1989.

    PubMed  CAS  Google Scholar 

  39. Tyson, C. A.; Stacey, N. H.In vitro screens from CNS, liver, and kidney for systemic toxicity. Toxicol. Ind. Health 5:107–132; 1989.

    PubMed  CAS  Google Scholar 

  40. Tyson, C. A.; Green, G. E. Cytotoxicity measures: choices and methods. In: Rauckman, E. J.; Padilla, G. M., ed. The isolated hepatocytes. New York: Academic Press; 1987:119–158.

    Google Scholar 

  41. Virag, R. Intracavernous injection of papaverine for erectile failure. [Letter to the editor]. Lancet 2:938: 1982.

    Article  PubMed  CAS  Google Scholar 

  42. Vaziri, N. D.; Stokes, J.; Treadwell, T. R. Lactic acidosis, a complication of papaverine overdose. Clin. Toxicol. 18:417–423; 1981.

    Article  PubMed  CAS  Google Scholar 

  43. Wilen, G.; Ylitalo, P. Metabolism of [14C]papaverine in man. J. Pharm. Pharmacol., 34: 264–266; 1982.

    PubMed  CAS  Google Scholar 

  44. Wilson, R. F.; Carl, W.; White, C. W. Serious ventricular dysrhythmias after intracoronary papaverine. Am. J. Cardiol. 62:1301–1302; 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Williams, J.; Foster, P. M. The production of lactate and pyruvate as sensitive indices of altered rat sertoli cell functionin vitro following the addition of various toxicants. Toxicol. Appl. Pharmacol. 94:160–170; 1988.

    Article  PubMed  CAS  Google Scholar 

  46. Zimmerman, H. J. Papaverine revisited as hepatotoxin. N. Engl. J. Med. 281:1364–1365; 1969.

    Article  PubMed  CAS  Google Scholar 

  47. Zorgniotti, A. W.; Lefleur, R. S. Auto-injection of the corpus cavernosum with a vasoactive drug combination for vasculogenic impotence. J. Urol. 133:39; 1985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grant ES04200-02 from the National Institute of Environmental Health Sciences, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davila, J.C., Reddy, C.G., Davis, P.J. et al. Toxicity assessment of paraverine hydrochloride and papaverine-derived metabolites in primary cultures of rat hepatocytes. In Vitro Cell Dev Biol 26, 515–524 (1990). https://doi.org/10.1007/BF02624095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624095

Key words

Navigation