Skip to main content
Log in

Response of mammalian cells to controlled growth rates in steady-state continuous culture

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

  1. 1.

    Mouse LS cells grow in completely mixed steady-state continuous suspension (“chemostat”) culture in defined medium.

  2. 2.

    The steady-state concentration of cells is maximal at a dilution rate of 0.30 to 0.35 day−1.

  3. 3.

    Glucose can act as the limiting substrate for LS cells under chemostat conditions.

  4. 4.

    The glucose oxidation rate per cell does not vary with dilution rate.

  5. 5.

    Maintenance energy is 19 picomoles of ATP per cell per day. Growth energy is 22 picomoles of ATP per cell.

  6. 6.

    Slowly growing cells contain more protein and less RNA per cell than rapidly growing cells.

  7. 7.

    The “efficiency” of protein synthesis decreases in slowly growing cells, in which a lower proportion of ribosomes is present in the form of polysomes or ribosomal subunits.

  8. 8.

    Newly-made 18S RNA appears early in the cytoplasm of rapidly growing cells, but is greatly delayed in slowly growing cells.

  9. 9.

    Pulsed additions of a limiting substrate to steady-state populations may lead to synchronized cells that have a controlled interdivision time. Hence chemostat cultures may be used to investigate the interdependence of events in the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pirt, S. J. 1972. Prospects and problems in continuous fow culture of micro-organisms. J. Appl. Chem. Biotechnol. 22: 55–64.

    CAS  Google Scholar 

  2. Cohen, E. P., and H. Eagle. 1961. A simfied chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture. J. Exp. Med. 13: 467–474.

    Article  Google Scholar 

  3. Sinclair, R., R. A. Reid, and P. Mitchell. 1963. Culture of strain L cells in suspension: replacement of polymer by traces of trypsin in a defined medium. Nature 197: 982–984.

    Article  PubMed  CAS  Google Scholar 

  4. Sinclair, R. 1966. Steady-state suspension culture and metabolism of strain L mouse cells in simple defined medium. Exp. Cell Res. 41: 20–31.

    Article  PubMed  CAS  Google Scholar 

  5. Pirt, S. J., and D. S. Callow. 1964. Continuous flow culture of the ERK and L types of mammalian cells. Exp. Cell Res. 33: 413–421.

    Article  PubMed  CAS  Google Scholar 

  6. Griffiths, J. B., and S. J. Pirt. 1967. The uptake of amino acids by mouse cells (strain L S) during growth in batch culture and chemostat culture: the influence of cell growth rate. Proc. R. Soc. B. 168: 421–438.

    CAS  Google Scholar 

  7. Moser, H., and G. Vecchio. 1967. The production of stable steady-states in mouse ascites mast cell cultures maintained in a chemostat. Experientia 23: 120–123.

    Article  PubMed  CAS  Google Scholar 

  8. Peraino, C., S. Bacchetti, and W. J. Eisler. 1970. Automated continuous culture of mammalian cells in suspension. Science 169: 204–205.

    Article  PubMed  CAS  Google Scholar 

  9. Herbert, D., R. Ellsworth, and R. C. Telling. 1956. The continuous culture of bacteria; a theoretical and experimental study. J. Gen. Microbiol. 14: 601–622.

    PubMed  CAS  Google Scholar 

  10. Birch, J. R., and S. J. Pirt. 1970. Improvements in a chemically defined medium for the growth of mouse cells (strain L S) in suspension. J. Cell Sci. 7: 661–670.

    PubMed  CAS  Google Scholar 

  11. Kubitschek, H. E. 1971.Introduction to Research with Continuous Cultures. Prentice-Hall, Inc., Englewood-Cliffs, N. J., Chap. 4.

    Google Scholar 

  12. Williams, F. M. 1967 A model of cell growth dynamics. J. Theor. Biol. 15: 190–207.

    Article  PubMed  CAS  Google Scholar 

  13. Pirt, S. J. 1965 The maintenance energy of bacteria in growing cultures. Proc. R. Soc. B. 163: 224–231.

    CAS  Google Scholar 

  14. Wase, D. A. J., and J. S. Hough 1966. Continuous culture of yeast on phenol. J. Gen Microbiol. 42: 13–23.

    PubMed  CAS  Google Scholar 

  15. Kilburn, D. G., M. D. Lilly and F. C. Webb. 1969. The energetics of mammalian cell growth. J. Cell Sci. 4: 645–654.

    PubMed  CAS  Google Scholar 

  16. Sinclair, C. G., and H. H. Topiwala. 1970. Model for continuous culture which considers the viability concept. Biotechnol. Bioeng. 12: 1069–1079.

    Article  PubMed  CAS  Google Scholar 

  17. Kilburn, D. G., M. D. Lilly, D. A. Self, and F. C. Webb. 1969. The effect of dissolved oxygen partial pressure on the growth and carbohydrate metabolism of mouse LS cells. J. Cell Sci. 4: 25–37.

    PubMed  CAS  Google Scholar 

  18. Radlett, P. J., R. C. Telling, J. P. Whiteside, and M. A. Maskell. 1972. The supply of oxygen to submerged cultures of BHK21 cells. Biotechnol. Bioeng. 14: 437–445.

    Article  PubMed  CAS  Google Scholar 

  19. Barton, M. E. 1971. Effect of pH on the growth cycle of HeLa cells in batch suspension culture without oxygen control. Biotechnol. Bioeng. 13: 471–492.

    Article  PubMed  CAS  Google Scholar 

  20. Glinos, A. D., R. J. Werrlein, and N. M. Papadopoulos. 1965. Constitution, viability and lactate dehydrogenase in stationary-phase L-cell suspension cultures. Science 150: 350–353.

    Article  PubMed  CAS  Google Scholar 

  21. Self, D. A., D. G. Kilburn, and M. D. Lilly. 1968. The influence of dissolved oxygen partial pressure on the level of various enzymes in mouse LS cells. Biotechnol. Biong. 10: 815–828.

    Article  CAS  Google Scholar 

  22. Criss, W. E. 1973. Control of the adenylate charge in the Morris “minimal-deviation” hepatomas. Cancer Res. 33: 51–56.

    PubMed  CAS  Google Scholar 

  23. Ecker, T. E., and M. Schaechter. 1963. Ribosome content and the rate of growth ofSalmonella typhimurium. Biochim. Biophys. Acta 76: 275–279.

    Article  PubMed  CAS  Google Scholar 

  24. Sykes, J., and T. W. Young. 1968. Studies on ribosomes and ribonucleic acids ofAerobacter aerogenes grown at different rates in a carbon-limited continuous culture. Biochim. Biophys. Acta 169: 103–116.

    PubMed  CAS  Google Scholar 

  25. Hogan, B. L. M., and A. Korner. 1968. Ribosomal subunits of Landschutz ascites cells during changes in polysomal distribution. Biochim. Biophys. Acta 169: 129–138.

    PubMed  CAS  Google Scholar 

  26. Joklik, W. K., and Y. Becker. 1965. Studies on the genesis of polyribosomes, II. The association of nascent messenger RNA with the 40 S subribosomal particles. J. Mol. Biol. 13: 511–520.

    Article  PubMed  CAS  Google Scholar 

  27. Koch, A. L. 1971. The adaptive responses ofEscherichia coli to a feast and famine existence. Adv. Microbiol. Physiol. 6: 147–217.

    Article  CAS  Google Scholar 

  28. Daskal, I. 1971. Ph.D. Thesis, McGill University, Montreal.

  29. Hansche, P. F. 1969. A theoretical basis for the entrainment of chemostat populations. J. Theor. Biol. 24: 335–350.

    Article  PubMed  CAS  Google Scholar 

  30. Franke, E. K. 1970. A mathematical model of synchronized periodic growth of cell populations. J. Theor. Biol. 26: 373–382.

    Article  PubMed  CAS  Google Scholar 

  31. Dawson, P. S. S. 1972. Continuously synchronized growth. In: A. C. R. Dean, S. J. Pirt, and D. W. Tempest (Eds.)Environmental Control of Cell Synthesis and Function. Academic Press, Inc. London, pp. 79–103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinclair, R. Response of mammalian cells to controlled growth rates in steady-state continuous culture. In Vitro 10, 295–305 (1974). https://doi.org/10.1007/BF02615311

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02615311

Keywords

Navigation