Skip to main content
Log in

Integrals of random fuzzy sets

  • Published:
Test Aims and scope Submit manuscript

Abstract

This paper tries to give a systematic investigation of integration of random fuzzy sets. Besides the widely used Aumann-integral adaptions of Pettis- and Bochner-integration for random elements in Banach spaces are introduced. The mutual relationships of these competing concepts will be explored comprehensively, completing and improving former results from literature. As a by product dominated convergence theorems, strong laws of large numbers and central limit theorems for random fuzzy sets can be derived. They are based on weaker assumptions than previous versions from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aumann, R. J. (1965). Integrals of set-valued functions.Journal of Mathematical Analysis and Applications, 12:1–12.

    Article  MATH  MathSciNet  Google Scholar 

  • Cohn, D. L. (1997).Measure Theory. Birkhäuser, Boston.

    Google Scholar 

  • Colubi, A., López-Díaz, M., Domínguez-Menchero, J. S., andGil, M. A. (1999). A generalized strong law of large numbers.Probability Theory and Related Fields, 114:401–417.

    Article  MATH  MathSciNet  Google Scholar 

  • Debreu, G. (1967). Integration of correspondences. InProceedings of the Fifth Berkely Symposium on Mathematical Statistics and Probability, Vol. II, Part I, pp. 351–372. University of California Press, Berkeley/Los Angeles.

    Google Scholar 

  • Diamond, P. andKloeden, P. (1990). Metric spaces of fuzzy sets.Fuzzy Sets and Systems,35:241–249.

    Article  MATH  MathSciNet  Google Scholar 

  • Diamond, P. andKloeden, P. (1994).Metric Spaces of Fuzzy Sets. World Scientific, Singapore.

    Google Scholar 

  • Engelking, R. (1989).General Topology. Heldermann, Berlin.

    MATH  Google Scholar 

  • Etemadi, N. (1981). An elementary proof of the strong law of large numbers.Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 55:119–122.

    Article  MATH  MathSciNet  Google Scholar 

  • Hiai, F. andUmegaki, H. (1977). Integrals, conditional expectations, and martingales of multivalued functions.Journal of Multivariate Analysis, 7:149–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Hoffmann-Jørgensen, J. (1985). The law of large numbers for nonmeasurable and non-separable random elements.Astérisque, 131:299–356.

    Google Scholar 

  • Hoffmann-Jørgensen, J. andPisier, G. (1976). The law of large numbers and the central limit theorem in Banach spaces.The Annals of Probability, 4:587–599.

    MATH  Google Scholar 

  • Klein, E. andThompson, A. C. (1984).Theory of Correspondences. Wiley & Sons, New York.

    MATH  Google Scholar 

  • Klement, E. P., Puri, M. L., andRalescu, D. A. (1986). Limit theorems for fuzzy random variables.Proceedings of the Royal Society of London. Series A, 407:171–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Körner, R. (1997). On the variance of fuzzy random variables.Fuzzy Sets and Systems,92:83–93.

    Article  MATH  MathSciNet  Google Scholar 

  • Krätschmer, V. (2001a).Induktive Statistik auf Basis unscharfer Meßkonzepte am Beispiel linearer Regressionsmodelle Postdoctoral Thesis, Faculty of Law and Economics, University of Saarland, Saarbrücken.

    Google Scholar 

  • Krätschmer, V. (2001b). A unified approach to fuzzy random variables.Fuzzy Sets and Systems, 123:1–9.

    Article  MATH  MathSciNet  Google Scholar 

  • Krätschmer, V. (2002a). Limit theorems for fuzzy-random variables.Fuzzy Sets and Systems, 126:253–263.

    Article  MATH  MathSciNet  Google Scholar 

  • Krätschmer, V. (2002b). Some complete metrics on spaces of fuzzy subsets.Fuzzy Sets and Systems, 130:357–365.

    Article  MATH  MathSciNet  Google Scholar 

  • Krätschmer, V. (2004). Probability theory in fuzzy sample spaces.Metrika, 60:167–189.

    Article  MATH  MathSciNet  Google Scholar 

  • Ledoux, M. andTalagrand, M. (1991).Probability in Banach Spaces. Springer-Verlag, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  • López-Díaz, M. andGil, M. A. (1997). Constructive definitions of fuzzy random variables.Statistics & Probability Letters, 36:135–143.

    Article  MATH  MathSciNet  Google Scholar 

  • López-Díaz, M. andGil, M. A. (1998). Approximating integrably bounded fuzzy random variables in terms of the generalized Hausdorff metric.Information Sciences, 104:279–291.

    Article  MATH  MathSciNet  Google Scholar 

  • Musiał, K. (1991). Topics in the theory of Pettis integration.Rendiconti dell'Istituti di Matematica dell'Universitá di Trieste, 23:177–262.

    MATH  Google Scholar 

  • Musiał, K. (1995). A few remarks concerning the strong law of large numbers for non-separable Banach space valued functions.Rendiconti dell'Istituti di Matematica dell'Universitá di Trieste, 26, suppl.:221–242.

    Google Scholar 

  • Näther, W. (2000). On random fuzzy variables of second order and their application to linear statistical inference with fuzzy data.Metrika, 51:201–221.

    Article  MATH  MathSciNet  Google Scholar 

  • Puri, M. L. andRalescu, D. A. (1986). Fuzzy random variables.Journal of Mathematical Analysis and Applications, 114:409–422.

    Article  MATH  MathSciNet  Google Scholar 

  • Stojakovic, M. (1994). Fuzzy random variables, expectation, and martingales.Journal of Mathematical Analysis and Applications, 184:594–606.

    Article  MATH  MathSciNet  Google Scholar 

  • Talagrand, M. (1984). Pettis integral and measure theory.Memoirs of the American Mathematical Society, 51(307):ix +224pp.

    MathSciNet  Google Scholar 

  • Terán, P. (2003). A strong law of large numbers for random upper semicontinuous functions under exchangeability conditions.,Statistics & Probability Letters, 65:251–258.

    Article  MATH  MathSciNet  Google Scholar 

  • Vakhania, N. N., Tarieladze, V. I., andChobanyan, S. A. (1987).Probability Distributions on Banach Spaces, Reidel, Dordrecht.

    MATH  Google Scholar 

  • Vitale, R. A. (1985) L p —metrics for compact, convex sets.Journal of Approximation Theory, 45:280–287.

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh, L. A. (1975). The concept of a linguistic variable and its applications to approximate reasoning I.Information Sciences, 8:199–249.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Krätschmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krätschmer, V. Integrals of random fuzzy sets. Test 15, 433–469 (2006). https://doi.org/10.1007/BF02607061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02607061

Key Words

AMS subject classification

Navigation