Skip to main content
Log in

Distribution of a sum of weighted noncentral chi-square variables

  • Published:
TEST Aims and scope Submit manuscript

Abstract

We derive Laguerre expansions for the density and distribution functions of a sum of positive weighted noncentral chi-square variables. The procedure that we use is based on the inversion of Laplace transforms. The formulas so obtained depend on certain parameters, which adequately chosen will give some expansions already known in the literature and some new ones. We also derive precise bounds for the truncation error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashour, S. K. andAbdel-Samad, A. I. (1990). On the computation of noncentral chi-square distribution function.Communications in Statistics. Simulation and Computation, 19(4):1279–1291.

    MATH  MathSciNet  Google Scholar 

  • Borget, G. andFaure, P. (1973). Algorithmes de factorisation approchée utilisant les fonctions orthogonales.Rev. Française Automat. Informat. Recherche Opérationnelle, 7(Ser. J-2):25–44.

    MathSciNet  Google Scholar 

  • Davis, A. W. (1977). A differential equation approach to linear combinations of independent chi-squares.Journal of the American Statistical Association, 72(357):212–214.

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, R. A. (1928). The general sampling distribution of multiple correlation coefficient.Proceedings of Royal Society. Series A, 121:654–673.

    Google Scholar 

  • Genizi, A. andSoller, M. (1979). Power derivation in an ANOVA model which is intermediate between the “fixed-effects” and the “random-effects” models.Journal of Statistical Planning Inference, 3(2):127–134.

    Article  MathSciNet  Google Scholar 

  • Gideon, R. A. andGurland, J. (1977). Some alternative expansions for the distribution function of a noncentral chi-square random variable.SIAM Journal on Mathematical Analysis, 8(1):100–110.

    Article  MATH  MathSciNet  Google Scholar 

  • Gurland, J. (1955). Distribution of definite and of indefinite quadratic forms.Annals of Mathematical Statistics, 26:122–127.

    MathSciNet  Google Scholar 

  • Gurmu, S., Rilstone, P., andStern, S. (1999). Semiparametric estimation of count regression models.Journal of Econometrics, 88(1):123–150.

    Article  MATH  MathSciNet  Google Scholar 

  • Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables.Biometrika, 48:419–426.

    MATH  MathSciNet  Google Scholar 

  • Jensen, D. R. andSolomon, H. (1972). A gaussian approximation to the distribution of a definite quadratic form.Journal of the American Statistical Association, 67:898–902.

    Article  Google Scholar 

  • Johnson, N. L., Kotz, S., andBalakrishnan, N. (1995).Continuous univariate distributions, vol. 2 ofWiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons Inc., New York, 2nd ed. A Wiley-Interscience Publication.

    Google Scholar 

  • Kotz, S., Johnson, N. L., andBoyd, D. W. (1967). Series representations of distributions of quadratic forms in normal variables. II. Non-central case.Annals of Mathematical Statistics, 38:838–848.

    MathSciNet  Google Scholar 

  • Mathai, A. M. andProvost, S. B. (1992).Quadratic forms in random variables, vol. 126 ofStatistics: Textbooks and Monographs, Marcel Dekker Inc. New York. Theory and applications.

    Google Scholar 

  • Morris, C. N. (1982). Natural exponential families with quadratic variance functions.The Annals of Statistics, 10(1):65–80.

    MATH  MathSciNet  Google Scholar 

  • Morris, C. N. (1983). Natural exponential families with quadratic variance functions: Statistical theory.The Annals of Statistics, 11(2):515–529.

    MATH  MathSciNet  Google Scholar 

  • Patnaik, P. B. (1949). The non-central χ2 andF-distributions and their applications.Biometrika, 36:202–232.

    MATH  MathSciNet  Google Scholar 

  • Pearson, E. S. (1959). Note on an approximation to the distribution of non-central χ2.Biometrika, 46:364.

    Article  MathSciNet  Google Scholar 

  • Ruben, H. (1962). Probability content of regions under spherical normal distributions. IV. The distribution of homogeneous and non-homogeneous quadratic functions of normal variables.Annals of Mathematical Statistics, 33:542–570.

    MathSciNet  Google Scholar 

  • Shah, B. K. (1963). Distribution of definite and indefinite quadratic forms from a non-central normal distribution.Annals of Mathematical Statistics, 34:186–190.

    Google Scholar 

  • Shah, B. K. andKhatri, C. G. (1961). Distribution of a definite quadratic form for non-central normal variates.Annals of Mathematical Statistics, 32:883–887.

    MathSciNet  Google Scholar 

  • Szegő, G. (1975).Orthogonal polynomials, vol. 23 ofColloquium Publications. American Mathematical Society. Providence, Rhode Island, 4th ed.

    Google Scholar 

  • Tan, W. Y. (1982). On comparing several straight lines under heteroscedasticity and robustness with respect to departure from normality.Communications in Statistics. Theory and Methods, 11(7):731–750.

    MATH  Google Scholar 

  • Tan, W. Y. andTiku, M. L. (1999).Sampling Distributions in Terms of Laguerre Polynomials with Applications. New Age International Publishers. New Delhi.

    Google Scholar 

  • Tang, P. C. (1938). The power function of the analysis of variances tests with tables and illustrations of their use.Statistical Research Memoirs, 2:126–149.

    Google Scholar 

  • Tiku, M. L. (1964). Approximating the general non-normal variance-ratio sampling distributions.Biometrika, 51:83–95.

    MATH  MathSciNet  Google Scholar 

  • Tiku, M. L. (1965). Laguerre series forms of non-central χ2 andF distributions.Biometrika, 52:415–427.

    MATH  MathSciNet  Google Scholar 

  • Vomişescu, R. (1999). Orthogonal polynomials in nonlinear analysis of regression.General Mathematics, 7(1–4):69–81.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Castaño-Martínez.

Additional information

This research was partially supported by FQM-331, FQM-270, BMF 2001-2378 and BMF2002-04525-C02-02

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castaño-Martínez, A., López-Blázquez, F. Distribution of a sum of weighted noncentral chi-square variables. TEST 14, 397–415 (2005). https://doi.org/10.1007/BF02595410

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595410

Key Words

AMS subject classification

Navigation