Skip to main content
Log in

Microstructural effects on the springback of advanced high-strength steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The application of advanced high-strength steels (AHSS) has been growing rapidly in the automotive industry. Because of their high-strength, thinner sheet metals can be used for body components to achieve both weight savings and increased safety. However, this will lead to greater springback deviation from design after the forming operation. Fundamental understanding and prediction of springback are required for springback compensation and tooling design. While various types of continuum mechanics based models have been proposed to simulate the mechanical behavior of advanced high-strength steels, few of them consider microstructural effects such as material heterogeneity. In this study, through sheet thickness strength variation has been observed in DP 780 and TRIP 780 steels. Finite-element simulation indicates that the through thickness effect (TTE) can have a significant impact on the springback behavior of these sheet metals. This is verified through our experimental work using draw-bend testing. The results suggest that microstructural effects should be considered to accurately simulate springback of AHSS. Based on these results, implications of different microstructural designs will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Chainer:AISE Steel Technol., 2002, vol. 79 (7–8), pp. 69–73.

    Google Scholar 

  2. J.R. Shaw and B.K. Zuidema:J. Mater. Manuf., 2001, vol. 5 (110), pp. 976–83.

    Google Scholar 

  3. T. Senuma:Can. Metall. Q., 2004, vol. 43 (1), pp. 1–12.

    CAS  Google Scholar 

  4. R. Bode, M. Meurer, T.W. Schaumann, and W.W. Arnecke:Galvatech’04 Conf. Proc., reprinted by Association for Iron & Steel Technology, 2004, Warrendale, PA.

  5. T. Senuma:Iron Steel Inst. Jpn. Int., 2001, vol. 41 (6), pp. 520–32.

    CAS  Google Scholar 

  6. S. Keeler:Met. Forming, Apr. 2005, pp. 52–53.

  7. S.M. Song, K. Sugimoto, M. Kobayashi, H. Matsubara, and T. Kashima:Tetsu-to-Hagane, 2000, vol. 86 (8), pp. 563–69.

    CAS  Google Scholar 

  8. M. Takahashi:Nippon Steel Techn. Rep., 2003, vol. 88, pp. 2–7.

    Google Scholar 

  9. International Iron and Steel Institute: Advanced High Strength Steel (AHSS) Application Guidelines, Mar. 2005, www.worldautosteel.org

  10. E. Pereloma:Mater. Austr., 2003, Nov.–Dec., pp. 6–9.

  11. L. Svensson and J.K. Larsson:6th Int. Trends in Welding Research Conf. Proc., 2002, pp. 787–92.

  12. E. Biro and A. Lee:Sheet Metal Welding Conf. XI, 2004, Sterling Heights, MI.

  13. C. Hsu, P. Soltis, D. Barton, and C. Occhialini:Sheet Metal Welding Conf. XI, Sterling Heights, MI, 2004.

  14. C. Conrady and N. Kapustka:Sheet Metal Welding Conf. XII, Livonia, MI, May 9–12, 2006.

  15. S. Papaefthymiou, W. Bleck, U. Prahl, C. Acht, J. Sietsma, and S. van der Zwaag:Mater. Sci. Forum, 2003, vol. 426 (4), pp. 1355–60.

    Article  Google Scholar 

  16. B. Högmanet al.:Verschleißschutztechnik, Schopfheim, Germany, 2004.

  17. G. Hartmann:Processing State of the Art Multiphase Steels, ACI Conf. Berlin, 2004.

  18. B. Carlsson:3rd Int. Conf. Exhib. on Design and Production of Dies and Molds and 7th Int. Symp. on Advances in Abrasive Technology, Bursa, Turkey, June 17–19, 2004.

  19. Y. Kuriyama: No. 175-76thNMS (Nishiyama Memorial Sem.), ISIJ, Tokyo, Japan, 2001, p. 1.

    Google Scholar 

  20. E. Doege, S. Kulp, and C. Sunderkotter:Steel Res., 2002, vol. 73 (6–7), pp. 303–08.

    CAS  Google Scholar 

  21. A. Andersson:J. Mater. Proc. Technol., 2005, vol. 169 (3), pp. 352–56.

    Article  CAS  Google Scholar 

  22. C. Greisert and J. Wesemann:Steel Res., 2002, vol. 73 (6–7), pp. 309–13.

    CAS  Google Scholar 

  23. T. Ohwue, T. Yoshida, Y. Shirai, and T. Kikuma:Mater. Trans., 2003, vol. 44 (5), pp. 946–50.

    Article  CAS  Google Scholar 

  24. J.C. Lin and C.C. Tai:Int. J. Adv. Manuf. Technol., 1999, vol. 15 (3), pp. 163–70.

    Article  Google Scholar 

  25. D.K. Leu:J. Mater. Proc. Technol., 1997, vol. 66 (1–3), pp. 9–17.

    Article  Google Scholar 

  26. D.A. Smith:Die Design Handbook, 3rd ed., Society of Manufacturing Engineers, Dearborn, MI, 1990.

    Google Scholar 

  27. G. Sachs:Principles and Methods of Sheet Metal Fabricating, Reinhold Publishing Corp., New York, NY, 1951.

    Google Scholar 

  28. F.W. Wilson:Die Design Handbook, 1st ed., McGraw-Hill, Columbus, OH, 1955.

    Google Scholar 

  29. R.D. Webb and D.E. Hardt:J. Eng. Indus.-Trans. ASME, 1991, vol. 113, pp. 44–52.

    Google Scholar 

  30. C. Hindman and K.B. Ousterhout:J. Mater. Proc. Technol., 2000, vol. 99, pp. 38–48.

    Article  Google Scholar 

  31. A.P. Karafillis and M.C. Boyce:Int. J. Mech. Sci., 1992, vol. 34, pp. 113–31.

    Article  Google Scholar 

  32. A.P. Karafillis and M.C. Boyce:J. Mater. Proc. Technol., 1992, vol. 32, pp. 499–508.

    Article  Google Scholar 

  33. A.P. Karafillis and M.C. Boyce:Int. J. Mach. Tools Manuf., 1996, vol. 36, pp. 503–26.

    Article  Google Scholar 

  34. W. Gan and R.H. Wagoner:Int. J. Mech. Sci., 2004, vol. 46 (7), pp. 1097–113.

    Article  Google Scholar 

  35. W. Gan, R.H. Wagoner, K. Mao, S. Price, and F. Rasouli:J. Mater. Proc. Technol., 2004, vol. 126 (4), pp. 360–67.

    Google Scholar 

  36. R. Lingbeek, J. Huetink, S. Ohnimus, M. Petzoldt, and J. Weiher:J. Mater. Proc. Technol., 2005, vol. 169 (1), pp. 115–25.

    Article  Google Scholar 

  37. F.J. Gardiner:Trans. ASME, 1957, vol. 79, pp. 1–9.

    Google Scholar 

  38. W. Schroeder:Trans. ASME, 1943, vol. 65, pp. 817–27.

    Google Scholar 

  39. L. Papeleux and J.P. Ponthot:J. Mater. Proc. Technol., 2002, vol. 125, pp. 785–91.

    Article  Google Scholar 

  40. L. Sanchez, R.D. Robertson, and J.C. Gerdeen: SAE Paper 960595, Society of Automotive Engineers, Warrendale, PA, 1996.

  41. B.W. Shaffer and R.N. House, Jr.:ASME J. Appl. Mech., 1955, vol. 22, pp. 305–10.

    Google Scholar 

  42. B.S. Levy:J. Appl. Metalworking, 1984, vol. 3, pp. 135–41.

    Google Scholar 

  43. L.M. Geng and R.H. Wagoner:Int. J. Mech. Sci., 2002, vol. 44, pp. 123–48.

    Article  Google Scholar 

  44. W.D. Carden, L.M. Geng, D.K. Matlock and R.H. Wagoner:Int. J. Mech. Sci., 2002, vol. 44, pp. 79–101.

    Article  Google Scholar 

  45. K.P. Li, W.D. Carden, and R.H. Wagoner:Int. J. Mech. Sci., 2002, vol. 44, pp. 103–22.

    Article  Google Scholar 

  46. M. Huang and J.C. Gerdeen:Analysis of Autobody Stamping Technology, Society of Automotive Engineers, Warrendale, PA, 1994, 125–38.

    Google Scholar 

  47. T.X. Yu and W. Johnson:J. Mech. Working Technol., 1982, vol. 6 (1), pp. 5–21.

    Article  Google Scholar 

  48. S.W. Lee and D.Y. Yang:J. Mater. Proc. Technol., 1998, vol. 80 (1), pp. 60–67.

    Article  Google Scholar 

  49. W. Gan, P. Zhang, R.H. Wagoner, and G.S. Daehn:Int. J. Mater. Res. Adv. Technol., 2005, June, pp. 572–577.

  50. W. Gan, P. Zhang, R.H. Wagoner, and G.S. Daehn:Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2097–106.

    CAS  Google Scholar 

  51. D.F. Watt, X.Q. Xu, and D.J. Lloyd:Acta Mater., 1996, vol. 44 (2), pp. 789–99.

    Article  CAS  Google Scholar 

  52. Y.L. Shenet al.:Acta Metall. Mater., 1995, vol. 43 (4), pp. 1701–22.

    Article  CAS  Google Scholar 

  53. M. Ekh, R. Lillbacka, and K. Runesson:Int. J. Plast., 2004, vol. 20 (12), pp. 2143–59.

    Article  Google Scholar 

  54. J.O. Andersson, T. Helander, L.H. Hoglundet al.:CALPHAD, 2002, vol. 26 (2), pp. 273–312.

    Article  CAS  Google Scholar 

  55. E.O. Hall:Proc. Phys. Soc., Ser. B, 1951, vol. 64, pp. 747–53.

    Article  Google Scholar 

  56. N.J. Petch:J. Iron Steel Inst., 1953, May, pp. 25–28.

  57. E.F. Rauch and J.H. Schmitt:Mater. Sci. Eng. A, 1989, vol. 113, pp. 441–48.

    Article  Google Scholar 

  58. D.A. Hughes and N. Hansen:Acta Mater., 2000, vol. 48 (11), pp. 2985–3004.

    Article  CAS  Google Scholar 

  59. Abaqus/Standard User’s Manual 6.5, ABAQUS, Inc., Providence, RI, 2004.

  60. J.F. Wang, R.H. Wagoner, D.K. Matlock, and F. Barlat:Int. J. Solids Struct., 2005, vol. 42 (5–6), pp. 1287–1307.

    Article  Google Scholar 

  61. J.F. Wang, R.H. Wagoner, D.K. Matlock, W.D. Carden, D.K. Matlock, and F. Barlat:Int. J. Plas., 2004, vol. 20 (12), pp. 2209–32.

    Article  CAS  Google Scholar 

  62. S. Bugat, J. Besson, and A. Pineau:Comp. Mater. Sci., 1999, vol. 16 (1–4), pp. 158–66.

    Article  CAS  Google Scholar 

  63. P. Dawson, D. Boyce, S. MacEwen, and R. Rogge:Metall. Mater. Trans. A., 2000, vol. 31 (6), pp. 1543–55.

    Google Scholar 

  64. S.S. Babu, S.A. David, and M. Quintana:Welding J., 2001, vol. 80, pp. 91s-97s.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, W., Babu, S.S., Kapustka, N. et al. Microstructural effects on the springback of advanced high-strength steel. Metall Mater Trans A 37, 3221–3231 (2006). https://doi.org/10.1007/BF02586157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586157

Keywords

Navigation