Skip to main content
Log in

Adaptive neural network that subserves optimal homeostatic control of breathing

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An adaptive neural network model that exhibits the optimality and homeostasis characteristics of the respiratory control system is described. Based upon the Hopfield network structure and a postulated Hebb-like respiratory synapse with correlational short-term potentiation, the model is capable of mimicking the normal ventilatory responses to exercise and CO2 inputs without the need for an explicit exercise stimulus. Results suggest the possibility of an adaptive neuronal mechanism that effects optimal homeostatic regulation of respiration in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, C.J.; Jones, N.L. Rate of change of alveolar carbon dioxide and the control of ventilation during exercise. J. Physiol. 355:1–9; 1984.

    PubMed  CAS  Google Scholar 

  2. Bear, M.F.; Cooper, L.N.; Ebner, F.F. A physiological basis for a theory of synapse modification. Science 237:42–48; 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Bliss, T.V.P.; Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J. Physiol. 232:331–35; 1973.

    PubMed  CAS  Google Scholar 

  4. Brown, T.H.; Kairiss, E.W.; Keenan, C.L. Hebbian synapses: biophysical mechanisms and algorithms. Ann. Rev. Neurosci. 13:475–511; 1990.

    Article  PubMed  CAS  Google Scholar 

  5. Byrne, J.H. Cellular analysis of associative learning. Physiol. Rev. 67:329–439; 1987.

    PubMed  CAS  Google Scholar 

  6. Cunningham, D.J.C., Gardner, W.N. A quantitative description of the pattern of breathing during steady-state CO2 inhalation in man, with special emphasis on expiration. J. Physiol. 272:613–632; 1977.

    PubMed  CAS  Google Scholar 

  7. Defares, J.G. Principles of feedback control and their application to the respiratory control system. In: Fenn, W.O.; Rahn, H. (eds.) Handbook of Physiology. Respiration, Vol. I, Washington, DC: Am. Physiol. Soc.: 1964.

    Google Scholar 

  8. Eldridge, F.L.; Gill-Kumar, P.; Millhorn, D.E. Input-output relationships of central neural circuits involved in respiration in cats. J. Physiol. 311:81–95; 1981.

    PubMed  CAS  Google Scholar 

  9. Eldridge, F.L.; Millhorn, D.E. Oscillation, gating, and memory in the respiratory control system. In: Handbook of physiology, Sect. 3, Vol. II (eds.) Cherniack, N.S.; Widdicombe, J.G., Bethesda, MD: American Physiological Society; 1986. pp. 93–114.

  10. Eldridge, F.L.; Waldrop, T.G. Neural control of breathing during exercise. In: Whipp, B.J.; Wasserman, K. (eds.) Pulmonary physiology and pathophysiology of exercise. New York: Dekker; 1990: pp. 309–370.

    Google Scholar 

  11. Frégnac, Y.; Shulz, D.; Thorpe, S.; Bienenstock, E. A cellular analogue of visual cortical plasticity. Nature 333:367–370; 1988.

    Article  PubMed  Google Scholar 

  12. Gallego, J.; Perruchet, P. Classical conditioning of ventilatory responses in humans. J. Appl. Physiol. 70:676–682; 1991.

    PubMed  CAS  Google Scholar 

  13. Geppert, J.; Zuntz, N. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 42:189–245; 1888.

    Google Scholar 

  14. Gessell, R.; Brassfield, C.R.; Hamilton, M.A. An acidneurohumoral mechanism of nerve cell activation. Am. J. Physiol. 136:604–608; 1942.

    Google Scholar 

  15. Grodins, F.S. Analysis of factors concerned in regulation of breathing in exercise. Physiol. Rev. 30:220–239; 1950.

    PubMed  CAS  Google Scholar 

  16. Gustafsson, B.; Wigström, H.; Abraham, W.C.; Huang, Y.Y. Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J. Neurosci. 7:774–780; 1987.

    PubMed  CAS  Google Scholar 

  17. Hopfield, J.J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 79:2554–2558; 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Houk, J.C. Control strategies in physiological systems. FASEB J. 2:97–107; 1988.

    PubMed  CAS  Google Scholar 

  19. Jacobi, M.S.; Iyawe, V.I.; Patil, C.P.; Cummin, A.R.C.; Saunders, K.B. Ventilatory responses to inhaled carbon dioxide at rest and during exercise in man. Clin. Sci. 73:177–182; 1987.

    PubMed  CAS  Google Scholar 

  20. Kandel, E.R. A cell-biological approach to learning. Bethesda, MD: Grass Lecture Monograph 1; 1978.

    Google Scholar 

  21. Kelso, S.R.; Ganong, A.H.; Brown, T.H. Hebbian synapses in hippocampus. Proc. Natl. Acad. Sci. USA 83:5326–5330; 1986.

    Article  PubMed  CAS  Google Scholar 

  22. Lisberger, S.G. The neural basis of learning of simple motor skills. Science 242:728–735, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Magleby, K.L. Synaptic transmission, facilitation, augmentation, potentiation, depression. In: Edelman, G. (ed.) Encyclopedia of neuroscience, Vol. 2. Boston: Biekhauser; 1987: pp. 1170–1174.

    Google Scholar 

  24. Marr, D. A theory of cerebellar cortex. J. Physiol. 202:437–470; 1969.

    PubMed  CAS  Google Scholar 

  25. Marr, D. Vision. Freeman: San Francisco; 1982.

    Google Scholar 

  26. Marrian, C.R.K.; Peckerar, M.C. Electronic “neural” net algorithm for maximum entropy solutions of ill-posed problems. IEEE Trans. Circuit Syst. 36:288–294; 1989.

    Article  Google Scholar 

  27. Martin, P.; Lange, K.J.; Kaarakka, P.; Mitchell, G.S. Paired exercise and chemoreceptor stimulation alter subsequent ventilatory responses to excercise. FASEB J. 4:A540; 1990.

    Google Scholar 

  28. Millhorn, D.E. Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat. J. Physiol. 381:169–179; 1986.

    PubMed  CAS  Google Scholar 

  29. Morimoto, B.H.; Koshland, D.E. Short-term and long-term memory in single cell. FASEB J. 5:2061–2067; 1991.

    PubMed  CAS  Google Scholar 

  30. Oku, Y.; Saidel, G.M.; Chonan, T.; Altose, M.D.; Cherniack, N.S. Sensation and control of breathing: A dynamic model. Ann. Biomed. Eng. 19:251–272; 1991.

    PubMed  CAS  Google Scholar 

  31. Orpwood, R.D. Basic module for an adaptive control system based on neurone information processing. J. Biomed. Eng. 10:201–205; 1987.

    Article  Google Scholar 

  32. Poon, C.S. Optimal control of ventilation in hypoxia, hypercapnia and exercise. In: Whipp, B.J.; Wiberg, D.M., (eds.) Modelling and control of breathing. New York: Elsvier; 1983; pp. 189–196.

    Google Scholar 

  33. Poon, C.S. Estimation of response curves in closed-loop physiological control. J. Appl. Physiol. 61:1481–1491; 1986.

    PubMed  CAS  Google Scholar 

  34. Poon, C.S. Ventilatory control in hypercapnia and exercise: optimization hypothesis. J. Appl. Physiol. 62:2447–2459; 1987.

    PubMed  CAS  Google Scholar 

  35. Poon, C.S. Optimal regulation of ventilation during exercise. In: Khoo, M.C.K. (ed.) Modeling and parameter estimation in respiratory control. New York: Plenum; 1989: pp. 25–37.

    Google Scholar 

  36. Poon, C.S. Optimization behavior of brainstem respiratory neurons: A cerebral neural network model. Biol. Cybern. 66:9–17; 1991.

    Article  PubMed  CAS  Google Scholar 

  37. Poon, C.S., Potentiation of exercise ventilatory response by airway CO2 and dead space loading. J. Appl. Physiol. (submitted).

  38. Poon, C.S.; Greene, J.G. Control of exercise hyperpnea during hypercapnia in humans. J. Appl. Physiol. 59:792–797; 1985.

    PubMed  CAS  Google Scholar 

  39. Poon, C.S.; Lin, S.L.; Knudson, O.B. Optimization character if inspiratory neural drive. J. Appl. Physiol. 72:2005–2017; 1993.

    Google Scholar 

  40. Priban, I.P.; Fincham, W.F. Self-adaptive control and the respiratory system. Nature 208:339–343; 1965.

    Article  PubMed  CAS  Google Scholar 

  41. Sejnowski, T.J. Storing covariance with nonlinearly interacting neurons. J. Math. Biol. 4:303–321; 1977a

    Article  PubMed  CAS  Google Scholar 

  42. Sejnowski, T.J. Statistical constraints on synaptic plasticity. J. Theor. Biol. 69:385–389; 1977b.

    Article  PubMed  CAS  Google Scholar 

  43. Sejnowski, T.J.; Tesauro, G. The Hebb rule for synaptic plasticity: Algorithms and implementations. In: Byrne, J.H.; Berry, W.O. (es.) Neural models of plasticity. New York: Academic Press; 1989; pp. 94–103.

    Google Scholar 

  44. Stanton, P.K.; Sejnowski, T.J. Associative long-term depression in the hippocampus induced by hebbian covariance. Nature 339:215–218; 1989.

    Article  PubMed  CAS  Google Scholar 

  45. Swanson, G.D. An optimal controller motivated variational hypothesis. In: Benchetrit, G.; Baconnier, P.; Demongeot, J. (eds.) Concepts and formalizations in the control of breathing. Manchester, UK: Manchester University Press; 1986; pp. 143–156.

    Google Scholar 

  46. Tobin, M.J.; Perez, W.; Guenther, S.M.; D'alonzo, G.; Dantzker, D.R. Breathing pattern and metabolic behavior during anticipation of exercise. J. Appl. Physiol. 60:1306–1312.

  47. Wagner, P.G.; Eldridge, F.L. Development of short-term potentiation of respiration. Respir. Physiol. 83:129–140; 1991.

    Article  PubMed  CAS  Google Scholar 

  48. Wasserman, K.; Whipp, B.J.; Casaburi, R. In: Handbook of physiology, Sect. 3, Vol. II Cherniack, N.S.; Widdicombe, J.G. (eds.) Bethesda, MD: American Physiological Society; 1986: pp. 595–620.

    Google Scholar 

  49. Yamamoto, W.S. Mathematical analysis of the time course of alveolar CO2. J. Appl. Physiol. 15:215–219; 1960.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poon, CS. Adaptive neural network that subserves optimal homeostatic control of breathing. Ann Biomed Eng 21, 501–508 (1993). https://doi.org/10.1007/BF02584332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584332

Keywords

Navigation