Skip to main content
Log in

Primary and continuous midgut cell cultures fromPseudaletia unipuncta (lepidoptera: Noctuidae)

  • Special—Proceedings from the 2000 International Conference on Invertebrate Cell and Tissue Culture
  • Symposium on Insect Midgut
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Midgut epithelial cells were isolated from fifth-instarPseudaletia unipuncta larvae by collagenase treatment of midgut tissue, and cultured in TNM-FH medium. Long-term continuous culture and maintenance of midgut cells were achieved withP. unipuncta armyworm intestinal cells. Several cells lines were obtained from theseP. unipuncta primary cultures, and they have been subcultured and maintained for over 24 mo. The three major midgut cell types were present in the cultures, including stem (regenerative), columnar, and goblet cells. In vitro morphogenesis and differentiation of columnar and goblet cells from stem cells were observed. There appeared to be a cycle of cell death of goblet and columnar cells followed by their replacement from stem cells every 7–8 wk. After approximately six passages, the cell density in T-flasks appeared to be somewhat constant, reaching 103–104 cells per milliliter of medium. The columnar cells are round to rectangular in shape and possess a brush border, while the goblet cells have a classic flask-like shape with a central cavity. Peritrophic membrane-like secretions were observed in all the culture flasks. Infection of these cells with multiply embedded nucleopolyhedrovirus was confirmed, and we conclude that these midgut cells can be used as an in vitro model system to study early events in baculovirus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baines, D.; Brownwright, A.; Schwarrtz, J. L., Establishment of primary and continuous cultures of epithelial cells from larval lepidopteran midguts. J. Insect Physiol. 40:347–357; 1994.

    Article  Google Scholar 

  • Baines, D.; Schwarrtz, J. L.; Sohi, S. S.; Dedes, J.; Pang, A. Comparison of the response of midgut epithelial cells and cell lines from Lepidopteran larvae to CryIA toxins fromBacillus thuringiensis. J. Insect Physiol. 43:823–831; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Billingsly, P. F.; Lehane, M. J. Structure and ultrastructure of the insect midgut. In: Lehane, M. J.; Billingsly, P. F., ed. Biology of the insect midgut. London: Chapman and Hall; 1996:31–54.

    Google Scholar 

  • Borchiellini, C.; Coulon, J.; Le, P. Y. The function of type IV collagen duringDrosophila muscle development. Mech. Dev. 58:179–191; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Braun, L.; Keddie, B. A. A new tissue technique for evaluating the effects ofBacillus thuringiensis toxins on insect midgut epithelium. J. Invertebr. Pathol. 69:92–104; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Engelhard, E. K.; Kam-Morgan, L. V.; Washburn, J. O.; Volkman, L. E. The insect tracheal system: a comduit for the systemic spread ofAutographa californica M nuclear polyhedrosis virus. Proc. Natl. Acad. Sci. USA 91:3224–3227; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Federici, B. A. Insecticidal bacterial proteins identify the midgut epithelium as a source of novel target sites for insect control. Arch. Insect Biochem. Physiol. 22:367–371; 1993.

    Article  Google Scholar 

  • Flint, N.; Cove, F. L.; Evans, G. S. Heparin stimulates the proliferation of intestinal epithelial cells in primary culture. J. Cell Sci. 107:401–411; 1994.

    PubMed  CAS  Google Scholar 

  • Girardi, A. J.; McMichael Jr., H.; Henle, W. The use of HeLa cells in suspension for the quantitative study of virus propagation. Virology 2:532–544; 1956.

    Article  PubMed  CAS  Google Scholar 

  • Granados, R. R.; Lawler, K. A. In vivo pathway ofAutographa californica baculovirus invasion and infection. Virology 108:297–308; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Granados, R. R.; Li, G.; Derksen, C. G.; McKenna, K. A. A new insect cell line fromTrichoplusia ni (BTI-Tn-5B1-4) susceptible toTrichoplusia ni single enveloped nuclear polyhedrosis virus. J. Invertebr. Pathol. 64:260–266; 1994.

    Article  Google Scholar 

  • Granados, R. R.; Naughten, M. Replication ofAmsacta moorei entomopoxvirus andAutographa californica nuclear polyhedrosis virus in hemocyte cell lines fromEstigmene acrea. In: Kurstak, E.; Maramorosch, K., ed., Invertebrate tissue culture: applications in medicine, biology and agriculture. New York: Academic Press; 1976:379–384.

    Google Scholar 

  • Granados, R. R.; Zhong, J.; Li, G.; Garcia, J.; Wang, P. Primary and established midgut cultures fromPseudaletia unipuncta andTrichoplusia ni larvae for baculovirus studies [abstract]. In Vitro Cell. Dev. Biol. 36(No. 3, Part II):15A; 2000.

    Google Scholar 

  • Hink, W. F. Established insect cell line from the cabbage looper,Trichoplusia ni. Nature 220:466–467; 1970.

    Article  Google Scholar 

  • Kawai, Y.; Mitsuhashi, J. An insect cell line discrimination method by RAPD-PCR. In Vitro Cell. Dev. Biol. 33:512–515; 1997.

    Article  CAS  Google Scholar 

  • Kusche, G. M.; Garrison, K.; Mackrell, A. J.; Fessler, L. I.; Fessler, J. J. Laminin A chain: expression duringDrosophila development and genomic sequence. EMBO J. 11:4519–4527; 1992.

    Google Scholar 

  • Lane, N. J.; Dallai, R.; Ashhurst, D. E. Structural macromolecules of the cell membranes and the extracellular matrices of the insect midgut. In: Lehane, M. J.; Billingsley, P. F., ed. Biology of the insect midgut. London: Chapman and Hall; 1996:115–150.

    Google Scholar 

  • Loeb, M. J.; Hakim, R. S. Insect midgut epitheliumin vitro: an insect stem cell system. J. Insect Physiol. 42:1103–1111; 1996.

    Article  CAS  Google Scholar 

  • Loeb, M. J.; Hakim, R. S. Cultured midgut cells ofHeliothis virescens (Lepidoptera): fibronectin and integrin β 1 immunoreactivity during differentiationin vitro. Invertebr. Reprod. Dev. 35:95–102; 1999.

    CAS  Google Scholar 

  • Loeb, M. J.; Hakim, R. S.; Martin, P.; Narang, N.; Goto, S.; Takeda, M. Apoptosis in cultured midgut cells fromHeliothis virescens larvae exposed to various conditions. Arch. Insect Biochem. Physiol. 45:12–23; 2000a.

    Article  PubMed  CAS  Google Scholar 

  • Loeb, M. J.; Vaughn, J. L.; Clark, E. A. Primary cultures of midgut cells fromHeliothis virescens can be frozen and stored. In Vitro Cell. Dev. Biol. 36:7–10; 2000b.

    Article  CAS  Google Scholar 

  • Mitsuhashi, J.; Grace, T. D. C. The effects of insect hormones on the multiplication rates of cultured insect cellsin vitro. Appl. Entomol. Zool. 5:182–188; 1970.

    CAS  Google Scholar 

  • Opas, M.; Dziak, E. Effects of substrata and method of tissue dissociation on adhesion cytoskeleton and growth of chick retinal pigmented epitheliumin vitro. In Vitro Cell. Dev. Biol. 24:885–892; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Sadrud-Din, S. Y.; Hakim, R. S.; Loeb, M. J. Proliferation and differentiation of midgut epithelial cells fromManduca sexta, in vitro. Invertebr. Reprod. Dev. 26:197–204; 1994.

    Google Scholar 

  • Sadrud-Din, S. Y.; Loeb, M. J.; Hakim, R. S.In vitro differentiation of isolated stem cells from the midgut ofManduca sexta larvae. J. Exp. Biol. 199:319–325; 1996.

    Article  PubMed  Google Scholar 

  • Vaughn, J. L.; Goodwin, R. H.; Tompkins, G. J.; McCawley, P. The establishment of two cell lines from the insectSpodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13:213–217; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Wang, P.; Granados, R. R. An intestinal mucin is the target substrate for a baculovirus enhancin. Proc. Natl. Acad. Sci. USA 94:6977–6982; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Wang, P.; Granados, R. R.; Shuler, M. L. Studies on serum-free culture of insect cells for virus propagation and recombinant protein production. J. Invertebr. Pathol. 59:46–53; 1992.

    Article  CAS  Google Scholar 

  • Wang, P.; Hammer, D. A.; Granados, R. R. Interaction of enhancin, a viral encoded protein, from the granulosis virus ofTrichoplusia ni with the midgut epithelium and peritrophic membrane of four lepidopteran insects. J. Gen. Virol. 75:1961–1967; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. M.; McCarthy, W. J. Cytolytic activity ofBacillus thuringiensis CrylC and CrylAc toxins toSpodoptera sp. midgut epithelial cellsin vitro. In Vitro Cell. Dev. Biol. 33:315–323; 1997.

    CAS  Google Scholar 

  • Washburn, J. O.; Kirkpatrick, B. A.; Volkman, L. E. Insect protection against viruses. Nature 383:767; 1996.

    Article  CAS  Google Scholar 

  • Wyss, C.Chironomus tentans epithelial cell lines sensitive to ecdysteroids, juvenile hormone, insulin and heat shock. Exp. Cell Res. 139:309–319; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Yasothornsrikul, S.; Davis, W. J.; Cramer, G.; Kimbrell, D. A.; Dearolf, C. R. Viking. Identification and characterization of a second type IV collagen inDrosophila. Gene 198:17–25; 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Granados.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, J.J., Li, G., Wang, P. et al. Primary and continuous midgut cell cultures fromPseudaletia unipuncta (lepidoptera: Noctuidae). In Vitro Cell.Dev.Biol.-Animal 37, 353–359 (2001). https://doi.org/10.1007/BF02577570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02577570

Key words

Navigation