Skip to main content
Log in

Diurnal variation of amylase secretion is coupled with alterations of β-adrenoceptors in the rat parotid gland

  • Published:
Research in Experimental Medicine

Summary

Diurnal changes in the neurotransmitter receptors are important for studying the receptor function in neurophysiology. The purpose of this study is to gain an insight into the regulatory mechanisms of the diurnal variation of amylase secretion. Rat salivary amylase levels showed a diurnal variation with two peaks, a marked peak at 13 h and a lesser peak at 21 h. This increase in salivary amylase levels was completely inhibited by pretreatment of rats with the β-adrenergic antagonist propranolol, but not by the α-adrenergic antagonist phentolamine. Amylase level in parotid tissue homogenate also showed a diurnal change, but there was only one peak, at 13 h. The number of maximal binding sites (Bmax) for [3H]dihydroalprenolol (DHA) in parotid membranes showed a diurnal variation with two marked peaks at 13 and 21 h, but the affinity of parotid β-adrenoceptors for agonists or antagonists did not show any diurnal changes. Phosphorylation of nuclear non-histone proteins in the rat parotid gland showed diurnal variation with two marked peaks at 13 and 21 h. These results indicate that a diurnal variation in the number of rat parotid β-adrenoceptors, which is presumably regulated by gene expression, is coupled with a change in salivary amylase secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernfeld P (1955) Amylase α and β. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York

    Google Scholar 

  2. Bethea CL, Neill JD (1979) Prolactin secretion after cervical stimulation of rats maintained in constant dark or constant light. Endocrinology 104:870–876

    Article  PubMed  CAS  Google Scholar 

  3. Burbach JPH, Liu B, Voorhuis TAM, Van Tol HHM (1988) Diurnal variation in vasopressin and oxytocin messenger RNAs in hypothalamic nuclei of the rat. Mol Brain Res 4:157–160

    Article  CAS  Google Scholar 

  4. Clarke CF, Fogelman AM, Edwards PA (1984) Diurnal rhythm of rat liver mRNAs encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem 259:10439–10447

    PubMed  CAS  Google Scholar 

  5. Cugini P, Lucia P, Tomassini R, Centanni M, Salandi E, Scavo D (1982) Circadian rhythms of plasma renin, aldosterone and cortisol. Effect of beta-adrenergic blockade by propranolol in patients with recent, advanced and complicated forms of essential hypertension. Chronobiologia 9:229–235

    PubMed  CAS  Google Scholar 

  6. Gonzalez-Brito A, Reiter RJ, Menendez-Pelaez A, Guerrero JM, Santan C, Jones DJ (1988) Darkness-induced changes in noradrenergic input determine the 24 hour variation in beta-adrenergic receptor density in the rat pineal gland: in vivo physiological and pharmacological evidence. Life Sci 43:707–714

    Article  PubMed  CAS  Google Scholar 

  7. Hata F, Ishida H, Kagawa K, Kondo E, Kondo S, Noguchi Y (1983) β-Adrenoceptor alterations coupled with secretory response in rat parotid tissue. J Physiol (Lond) 341:185–196

    CAS  Google Scholar 

  8. Ishida H, Ahmed K (1973) Studies on phosphoproteins of submandibular gland nuclei isolated from isoproterenol-treated rats. Exp Cell Res 78:31–40

    Article  PubMed  CAS  Google Scholar 

  9. Ishida H, Ahmed K, (1974) Studies on chromatin-associated protein phosphokinase of submandibular gland from isoproterenol-treated rats. Exp Cell Res 84:127–136

    Article  PubMed  CAS  Google Scholar 

  10. Jarrousse C, Lardeux B, Bourdel G, Girard-Globa A, Rosselin G (1980) Portal insulin and glucagon in rats fed proteins as a meal: immediate variations and circadian modulations. J Nutr 110:1764–1773

    PubMed  CAS  Google Scholar 

  11. Kafka MS, Wirz-Justice A, Naber D (1981) Circadian and seasonal rhythms in α- and β-adrenergic receptors in the rat brain. Brain Res 207:409–419

    Article  PubMed  CAS  Google Scholar 

  12. Kafka MS, Wirz-Justice A, Naber D, Moore RY, Benedito MA (1983) Circadian rhythms in rat brain neurotransmitter receptors. Fed Proc 42:2796–2801

    PubMed  CAS  Google Scholar 

  13. Kafka MS, Benedito MA, Roth RH, Steele LK, Wolfe WW, Catravas GN (1986) Circadian rhythms in catecholamine metabolites and cyclic nucleotide production. Chronobiol Int 3:101–115

    PubMed  CAS  Google Scholar 

  14. Kanno T, Saito A, Ishikawa K, Habara Y, Abe Y, Mizoguchi J (1979) Biological rhythms and their control mechanism. In: Suda M, Hayaishi O, Nakagawa H (eds) Elsevier/North-Holland Biochemical Press, Amsterdam, pp 273–279

    Google Scholar 

  15. Kräuchi K, Wirz-Justice A, Morimasa T, Willener R, Feer H (1984) Hypothalamic α2− and β-Adrenoceptor rhythms are correlated with circadian feeding: evidence from chronic methamphetamine treatment and withdrawal. Brain Res 321:83–90

    Article  PubMed  Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  17. Miki K, Ishida H, Yamamoto I (1976) Effect of cytarabine and bleomycin on the phosphorylation of nuclear acidic protein. FEBS Lett 69:249–251

    Article  PubMed  CAS  Google Scholar 

  18. Murakami M, Greer MA, Hjulstad S, Greer SE, Tanaka K (1989) Evidence that rat pineal thyroxine 5′-deiodinase in primarily stimulated by β- and not α-adrenergic agonists and that its adrenergic-stimulated and spontaneous rhythmic nocturnal rise require RNA and protein synthesis (42849). Proc Soc Exp Biol Med 190:190–194

    PubMed  CAS  Google Scholar 

  19. Scatchard G (1949) The alterations of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  20. Schramm M, Danon D (1961) The mechanism of enzyme secretion by the cell. I. Storage of amylase in the zymogen granules of the rat-parotis gland. Biochim Biophys Acta 50: 102–112

    Article  PubMed  CAS  Google Scholar 

  21. Sibley DR, Lefkowitz RJ (1985) Molecular mechanisms of receptor desensitization using the β-adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317:124–129

    Article  PubMed  CAS  Google Scholar 

  22. Sreebny LM, Johnson DA, Robinovitch MR (1971) Functional regulation of protein synthesis in the rat parotid gland. J Biol Chem 246:3879–3884

    PubMed  CAS  Google Scholar 

  23. Stein GS, Spelsberg TC, Kleinsmith LJ (1974) Nonhistone chromosomal proteins and gene regulation. Science 183:817–824

    Article  PubMed  CAS  Google Scholar 

  24. Yamamoto H, Nagai K, Nakagawa H (1987) Role of SCN in daily rhythms of plasma glucose, FFA, insulin and glucagon. Chronobiol Int 4:483–491

    PubMed  CAS  Google Scholar 

  25. Wirz-Justice A (1987) Circadian rhythms in mammalian neurotransmitter receptors. Prog Neurobiol 29:219–259

    Article  PubMed  CAS  Google Scholar 

  26. Wurtman RJ, Axelrod J (1966) A 24-hour rhythm in the content of norepinephrine in the pineal and salivary glands of the rat. Life Sci 5:665–669

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, Y., Amano, I., Chen, C. et al. Diurnal variation of amylase secretion is coupled with alterations of β-adrenoceptors in the rat parotid gland. Res. Exp. Med. 192, 231–240 (1992). https://doi.org/10.1007/BF02576279

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576279

Key words

Navigation