Skip to main content
Log in

Automorphism groups of fields

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We consider pairs (K,G) of an infinite field K or a formally real field K and a group G and want to find extension fields F of K with automorphism group G. If K is formally real then we also want F to be formally real and G must be right orderable. Besides showing the existence of the desired extension fields F, we are mainly interested in the question about the smallest possible size of such fields. From some combinatorial tools, like Shelah’s Black Box, we inherit jumps in cardinalities of K and F respectively. For this reason we apply different methods in constructing fields F: We use a recent theorem on realizations of group rings as endomorphism rings in the category of free modules with distinguished submodules. Fortunately this theorem remains valid without cardinal jumps. In our main result (Theorem 1) we will show that for a large class of fields the desired result holds for extension fields of equal cardinality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, E., Schreier, O., Algebraische Konstruktion reeler Körper, Hamburger Abhandl.5 (1927), 85–99

    Google Scholar 

  2. Baer, R., Dichte, Archimedizität und Starrheit geordneter Krper, Math. Ann.188 (1970), 165–205

    Article  MATH  MathSciNet  Google Scholar 

  3. Böttinger, C., Göbel, R., Endomorphism algebras of modules with distinguished partially ordered submodules over commutative rings, Jour. of Pure and Appl. Algebra76 (1991), 121–141

    Article  MATH  Google Scholar 

  4. Cherlin, G., Model Theoretic Algebra, Selected Topics, Springer LNM521 (1970), Berlin, Heidelberg, New York

  5. Conrad, P., Right-ordered groups, Michigan Math. J.6 (1959), 267–275

    Article  MATH  MathSciNet  Google Scholar 

  6. Corner, A. L. S., Göbel, R., Prescribing endomorphism algebras—a unified treatment, Proc. Lond. Math. Soc. (3)50 (1985), 447–479

    Article  MATH  Google Scholar 

  7. Corner, A. L. S., Every countable reduced torsion-free ring is an endomorphism ring, Proc. Lond. Math. Soc. (3)13 (1964), 687–710

    MathSciNet  Google Scholar 

  8. Corner, A. L. S., Endomorphism algebras of large modules with distinguished submodules, J. Algebra11 (1969), 155–185

    Article  MATH  MathSciNet  Google Scholar 

  9. Dugas, M., Göbel, R., May, W., Free modules with two distinguished submodules, submitted

  10. Dugas, M., Thomé, B., Countable Butler groups and vector spaces with four distinguished subspaces, J. Algebra138, (1991), 249–272

    Article  MATH  MathSciNet  Google Scholar 

  11. Dugas M., Göbel, R., Field extensions in L—A solution of C. U. Jensen’s $25-problem. pp. 496–516 in “Abelian Group Theory,” Proceedings Oberwolfach 1985, (R. Göbel and E.A. Walker, eds.), Gordon and Breach, London, 1987

    Google Scholar 

  12. Dugas, M., Göbel, R., All infinite groups are Galois groups over any field, Trans. A.M.S.304 (1987) 355–383, Notices Amer. Math. Soc.32 (1985), 482

    Article  MATH  Google Scholar 

  13. Franzen, B., Göbel, R., The BBC-Theorem and its application to modules, pp. 207–226 in “Abelian Group Theory”, Proceedings Oberwolfach, 1985, (R. Göbel and E.A. Walker, eds.), Gordon and Breach, London 1987

    Google Scholar 

  14. Franzen, B., Göbel, R., Prescibing endomorphism algebras—the cotorsion-free case, Rendiconti Padova80 (1988) 215–241

    MATH  Google Scholar 

  15. Fried, E., A comment on automorphism groups of fields, Studia Sci. Math. Hungar.14 (1979), 315–317

    MATH  MathSciNet  Google Scholar 

  16. Fried E., Kollar, J., Automorphism groups of fields, Colloqu. Math. Soc. Janos Bolyai29 (1977), 293–303

    MathSciNet  Google Scholar 

  17. Fried E., Kollar, J., Automorphism group of algebraic number fields, Math. Z.163 (1978), 121–123

    Article  MATH  MathSciNet  Google Scholar 

  18. Fried, M., A note on automorphism groups of algebraic number fields, Proc. Amer. Math. Soc.80 (1980), 386–388

    Article  MATH  MathSciNet  Google Scholar 

  19. Fuchs, L., Infinite Abelian Groups, Academic Press New York, Vol. I (1970), Vol II (1973)

    MATH  Google Scholar 

  20. Funk, M., Kegel, O. Strambach, K., Gruppenuniversalität und Homogenisierbarkeit, Annali di Mat. pura ed appl.141 (1985) 1–126

    Article  MATH  MathSciNet  Google Scholar 

  21. Teyer, W. D., Jede endliche Gruppe ist Automorphismengruppe einer endlichen ErweiterungK│Q Arch. Math.41 (1983), 139–142

    Article  Google Scholar 

  22. Göbel, R., Modules with distinguished submodules, in “Abelian Group Theory,” Proceedings of the Curacao Conference 1991, Marcel and Dekker, 1993, pp. 55–64

  23. Göbel, R., May, W., Four submodules suffice for realizing algebras over commutative rings, Journ. Pure and Appl. Algebra65 (1990), 29–43

    Article  MATH  Google Scholar 

  24. Göbel, R., May, W., Independence in completions and endomorphism algebras, Forum Math.1 (1989), 215–226

    Article  MATH  MathSciNet  Google Scholar 

  25. Jacobson, N., Lectures in Algebra, Vol. III, Theory of fields and Galois theory, Van Nostrand, New York 1964

    MATH  Google Scholar 

  26. Kaplansky, I., “Fields and Rings,” The University of Chicago Press, Chicago, London 1965

    Google Scholar 

  27. Lang, S., Algebra, Addison-Wesley, Publ. Company, Reading, Mass. 1965

    MATH  Google Scholar 

  28. Prestel, A. Lectures on formally real fields, Springer, LNM1093 (1984), Berlin, Heidelberg, New York

    MATH  Google Scholar 

  29. Pröhle, P., Does the Frobenius endomorphism always generate a direct summand in the endomorphism monoid of prime characteristic, Bull. Austral. Math. Soc.30 (1984), 335–356

    Article  MATH  MathSciNet  Google Scholar 

  30. Pröhle, P., Does a given subfield of characteristic zero imply any restriction to the endomorphism monoids of fields? Acta Sci. Math.50 (1986), 15–38

    MATH  Google Scholar 

  31. Ringel, C. M., Tachikawa, H., QF-3 rings, J. Reine Angewandte Math.272 (1975), 49–72

    MATH  MathSciNet  Google Scholar 

  32. Scott, D., On completing ordered fields, pp. 274–278 in “Applications of model theory to algebra, analysis and probability,” Proc. Intern. Sympos. of the Institute of Technology, Calif., Ed. W. A. J. Luxemburg, Holt-Rinehart and Winston, New York 1969

    Google Scholar 

  33. Shelah, S., Existence of rigid-like families of abelian p-groups, pp. 384–402 in “Model Theory and Algebra,” Lectures Notes in Mathematics, vol.498, Springer-Verlag, Berlin and New York, 1975

    Chapter  Google Scholar 

  34. Shelah, S., A conbinatorial principle and endomorphism rings I. On p-groups. Israel J. of Math.49 (1984), 239–257

    MATH  Google Scholar 

  35. Shelah, S., A combinatorial principle and endomorphism rings of abelian groups II. pp. 37–86 in “Abelian Groups and Modules,” Proceeding Udine conference, (R. Göbel, C. Metelli, A. Orsatti, and L. Salce, eds.), CISM. Courses and Lectures, vol.287, Springer, Wien, 1984

    Google Scholar 

  36. Simson, D., Functor categories in which every flat object is projective, Bull. Acad. Polon. Ser. Math.22 (1974), 375–380

    MATH  MathSciNet  Google Scholar 

  37. Simson, D., Linear representations of partially ordered sets and vector space categories, Gordon and Breach, London 1992

    MATH  Google Scholar 

  38. van der Waerden, B. L., Algebra I, Springer, Berlin, Göttingen, Heidelberg 1960

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was processed by the author using the LATEX style filecljour1 from Springer-Verlag

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dugas, M., Göbel, R. Automorphism groups of fields. Manuscripta Math 85, 227–242 (1994). https://doi.org/10.1007/BF02568195

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02568195

Keywords

Navigation