Skip to main content
Log in

Liquid film and droplet stability consideration as applied to wet steam flow

  • Published:
Forschung im Ingenieurwesen A Aims and scope Submit manuscript

Abstract

The state of art and ongoing research concerning the flow of wet steam in large steam turbines is reviewed, particularly from the viewpoint of the behavior of the liquid film deposited upon the stationary blading. New experimental results concerning the non-steady behavior of the film and the resultant wavelet formation patterns under the action of high-velocity low-pressure steam flow are presented. These results are then correlated as a flow regime “map” showing various flow regions in terms of steam velocity (or relative steam-film velocity since film velocity is relatively very small) vs. film flow rate per unit transverse distance.

The distribution of liquid droplets shed from the blade trailing edge in the wake are studied as a function of distance downstream, steam velocity, and liquid film flow rate. In addition the droplet size is correlated in terms of critical droplet Weber number and compared with results of previous investigators. High-speed photographs of droplet distortions in a high-velocity air stream are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammitt, F.G.: Cavitation and multiphase flow—Theory and practice. McGraw-Hill, London, to be published 1979.

    Google Scholar 

  2. Gyarmathy, G.: Foundations of a wet-steam turbine theory (in German), Juris-Verlag, Zürich, 1962.

    Google Scholar 

  3. Gardner, C.C.: Events leading to erosion in steam turbine. Proc. Inst. Mech. Engrs. Vol. 178, Pt. 1 (1963/64) No. 23, pp. 593/623.

    Google Scholar 

  4. Christie, D.G., andG.W. Hayward: Observation of events leading to formation of water droplets which cause turbine blade erosion. Phil. Trans. Roy. Soc., Ser. A. No. 1110, Vol. 260 (1966) pp. 183/92.

    Google Scholar 

  5. Dejc, M.E., andG.A. Filipov: Gasdynamics of two-phase flow (in Russian). Energia, Moscow 1968.

    Google Scholar 

  6. Kirylov, I.I., andR.M. Jablonik: Wet-steam turbine theory foundations (in Russian). Energia, Leningrad, 1968.

    Google Scholar 

  7. Filipov, G.A., andW.W. Prahin: Investigation and design of wet-steam flow in turbines (in Russian). Energia, Moscow, 1973.

    Google Scholar 

  8. Moore, H.J., andC.H. Sieverding: Two-phase steam flow in turbines and separators theory; Instrumentalian engineering. Hemisphere Publ. Corp., McGraw-Hill, Washington, London, 1976.

    Google Scholar 

  9. Vahla, J.: Wet-steam flow and erosion of steam turbine blading (in Czech). SVUSS and Skoda Seminar, Praha, 1978.

  10. Krzyżanowski, J.: Some problems of wet-steam flow in turbine blading (in Polish). PWN, Warszawa-Poznan, 1969.

    Google Scholar 

  11. Ryley, D.J.: The present status of erosion studies in wet-steam turbines. Trans. IFFM No. 42-44, Gdańsk, 1969.

  12. Krzyżanowski, J., B. Weigle, andH. Severin: Semiempirical criterion of erosion threat in modern steam turbines. Trans. ASME, J. Basic Engr., 1971.

  13. Krzyżanowski, J.: The correlation between droplet stream structure and steam blading erosion. Trans. ASME, J. Engng. Power Vol. 96 (July 1974) No. 3.

  14. Krzyżanowski, J., andB. Weigle: Toward the criterion of erosion threat of steam turbines blading through the structure of the droplet stream. Proc. III Conf. on Large Steam Turbines, Trans. IFFM, No. 70-72 Gdańsk, 1976.

  15. Krzyżanowski, J.: On the erosion problems of large steam turbines (in German). Brennst.-Wärme-Kraft Vol. 29 (1977) No. 7, pp. 286/90.

    Google Scholar 

  16. Pouchot, W.D., F.J. Heymann et al.: Basic investigations of turbine erosion phenomena. NASA Report No. CR-1830, Washington, 1971.

  17. Heymann, F.J.: On the prediction of erosion in steam turbines. Paper No. 37, Proc. 6th Conf. Steam Turbines of Large Output, Pilsen, Czech., 1972.

  18. Kirilov, I.I., andI.P. Faddeev: Erosion of blades of turbines operating on wet steam. Thermal Engng. (1971) No. 18, pp. 74/78 and Teploenergetika (1971) No. 18, pp. 50/53.

    Google Scholar 

  19. Faddeev, I.P.: Erosion of wet-steam turbine blading (in Russian). Mashinostroenye, Leningrad, 1974.

    Google Scholar 

  20. Saric, W.S., andB.W. Marshall: An experimental investigation of the stability of a thin liquid layer adjacent to supersonic stream. AIAA J. Vol. 9 (1971) p. 1546.

    Google Scholar 

  21. Nayfeh, A.H., andW.S. Saric: Non-linear stability of a liquid adjacent to a supersonic stream. J. Fluid Mech. Vol. 58 (1973) p. 39.

    Article  MATH  Google Scholar 

  22. Bordner, G.L., A.H. Nayfeh andW.S. Saric: Stability of liquid films adjacent to compressible streams. Virginia Polytechnic Report No. E-73-3, 1973.

  23. Springer, G.S.: Erosion by liquid impact. John Wiley & Sons, New York, 1976.

    Google Scholar 

  24. Tabakoff, W., andA. Hamed: Dynamics and erosion study of solid particles in a cascade. Proc. III Conf. on Large Steam Turbines. Trans. IFFM, No. 70-72, Gdańsk, 1976.

  25. Ryley, D.J., andK.A. Tubman: Spontaneous condensation in high-pressure expanding steam. Proc. 2nd Conf. on Large Steam Turbines, Trans. IFFM, Polish Acad. Sci. Gdańsk 1969.

  26. Ryley, D.J., andM.J. Holmes: Sampling of high quality wet steam from steam mains operating at 11.4 bar pressure. Proc. Inst. Mech. Eng. Vol. 187 (1973) No. 31/73, pp. 381/93.

    Google Scholar 

  27. Gyarmathy, G., H.P. Burkhard, F. Lesch andA. Siegenthaler: Spontaneous condensation of steam at high pressure, First experimental results. Inst. Mech. Engr., Conf. Publ. No. 3 (1973) pp. 182/86.

    Google Scholar 

  28. Puzyrewski, R., andW. Studziński: One-dimensional water vapour expansion with condensation at higher pressures. Intern. J. Multiphase Flow (to be published).

  29. Valha, J., andD.J. Ryley: Optical studies of nucleation in high-pressure expanding steam condensation in high spead flows. 1977—Joint Applied Mechanics, Fluid Engineering and Bioengineering Conf., Yale Univ., Hew-Haven, Connect. June 15–17, 1977.

  30. Valha, J.: Experimental investigation of spontaneous condensation in high pressure Laval nozzle flow at 2–6 MPa and 200–300°C (in Czech.). Strojirenstvi Vol. 28 (1978) No. 4

  31. Gyarmathy, G., andH. Meyer: Spontaneous condensation (in German). VDI-Forsch.-Heft 508. Düsseldorf: VDI-Verlag 1965.

    Google Scholar 

  32. Puzyrewski, R.: Condensation of water vapour in a Laval nozzle (in Polish). Panstwowe Wydawnictwo Naukowe, Warszawa-Poznań, 1969.

    Google Scholar 

  33. Puzyrewski, R., andT. Król: Theoretical determination of the distribution function of diameters of drops formed by steam condensation in a de Laval nozzle. Trans. IFFM, No. 57, Gdańsk, 1971.

  34. Ryley, D.J., W.J. Ralph andK.A. Tubman: The collision behavior of water drops within a low pressure steam atmosphere. J. Mech. Sci. Vol. 12 (1970) pp. 589/96.

    Article  Google Scholar 

  35. Puzyrewski, R., andT. Król: Numerical analysis of Hertz-Knudsen model of condensation upon small droplets in water vapor. Trans. IFFM, Polish Acad. Sci. Gdańsk, No. 70-72, 1976.

  36. Valha, J.: Liquid phase movement in last stages of large condensing steam turbines. Paper 33, Proc. Conf. Large Steam Turbines, Inst. Tech. Engr., 1970.

  37. Gyarmathy, G., andF. Lesch: Fog droplet observation in Laval nozzle and in an experimental turbine. Proc. Inst. Mech. Engr., Vol. 184, 3G, 1969–70.

  38. Ryley, D.J., andP.D. Patel: Condensation on the surface of a low pressure steam turbine suction blade. Proc. Inst. Mech. Engrs. Vol. 186 (1973) No. 59/73, pp. 699/708.

    Google Scholar 

  39. Ryley, D.J., andJ. Small: Re-entrainment of deposited liquid from simulated steam turbine fixed blades. Inst. Mech. Engrs., Conf. Publ. No. 3 (1973) pp. 9/18.

    Google Scholar 

  40. Ryley, D.J., andB.N. Bennett-Cowell: The collision behavior of steam-borne water drops. Int. J. Mech. Sci. Vol. 9 (1967) pp. 817/33.

    Article  Google Scholar 

  41. Chmielniak, T.: An analysis of some characteristic phenomena of wet steam flow in turbine stages (in Polish). Sc. Report No. 341, Techn. Univ. of Silesia, Gliwice, 1972.

    Google Scholar 

  42. Krzyżanowski, J., J. Mikielewicz, S. Gumkowski andE. Ihnatowicz: Conclusions of the film stability investigation as applied to the steam turbines (in German). Report of the IFFM, No. 127/78, Gdańsk, 1978.

  43. Miles, J.W.: On the generation of surface waves by shear flows. J. Fluid Mech. Vol. 45 (1957) No. 3, p. 185.

    Article  MathSciNet  Google Scholar 

  44. Benjamin, T.B.: Shearing flow over a wavy boundary. J. Fluid Mech. Vol. 47 (1959) No. 6, p. 161.

    Article  MathSciNet  Google Scholar 

  45. Hewitt, G.F., andP.M.C. Lacey: The breakdown of the liquid film in annular two-phase flow. Int. J. Heat Mass Transfer Vol. 8 (1965) p. 781.

    Article  Google Scholar 

  46. Murgatroyd, W.: The role of shear and form forces in the stability of a dry patch in two-phase film flow. Int. J. Heat Mass Transfer. Vol. 8 (1965) p. 297.

    Article  Google Scholar 

  47. Ihnatowicz, E., S. Gumkowski andJ. Mikielewicz: Experimental study of evaporation and breakdown of the liquid films driven by shear stresses. ASME Paper No. 77-WA/HT-7, ASME, N.Y.C., 1977.

    Google Scholar 

  48. Kim, W., S. Krzeczkowski andF.G. Hammitt: Investigation of behavior of thin liquid films with co-current steam flow. Proc. Two-Phase Flow and Heat Transfer Symposium-Workshop, CERI, Univ. Miami, Miami, Fla. Oct. 18–20, 1976.

  49. Wurz, D.: Flow behavior of thin water films under the effect of co-current air flow of moderate to high subsonic velocities. Proc. 3rd Int. Conf. Rain Erosion and Associated Phenomena, Aug. 11–12, 1970, ed byA.A. Fyall, Royal Aircraft Estab., Farnsborough, England, pp. 727/50.

  50. Collier, J.G., andG.F. Hewitt: Film thickness measurement. ASME Paper No. 64-WA/HT-41, 1964.

  51. Hewitt, G.F., R.D. King andP.C. Lovegrove: Techniques for liquid film and pressure drop studies in annular two-phase flow. Chem. Engng. Progr. Vol. 45 (1964) pp. 73/83.

    Google Scholar 

  52. Puzyrewski, R., andR. Jasiński: Measurement of the thickness of thin water films by resistance method. Trans. Inst. Fluid Flow Machines, Polish Acad. Sci., Vol. 26 (1965) pp. 73/83.

    Google Scholar 

  53. Hammitt, F.G., andJ. Mikielewicz: Steam tunnel program and liquid film thickness gauge development at University of Michigan. Proc. 6th Conf. Steam Turbines of Large Output, Pilsen, Czech., July 1975, p. 134.

  54. Mikielewicz, J., andF.G. Hammitt: Generalized characteristics of electrical conductance film thickness gauges. Trans. Inst. Fluid Flow Machines, Polish Acad. Sci., Gdansk, 1976.

    Google Scholar 

  55. Saric, W.S., A.H. Nayfeh andS.G. Lekoudis: Experiments on the stability of liquid films adjacent to supersonic boundary layers. Virginia Polytech. Inst. Rept. VPI-E-75-21, Dept. of Engr. Sci. and Mech., Febr. 1976.

  56. Marschall, B.W., andW.G. Tiederman: A capacitance depth gage for thin liquid films. Rev. Sci. Instruments Vol. 43 (1972) No. 3, pp. 544/47.

    Article  Google Scholar 

  57. Nakoryakov, W.E., B.G. Pokusayev, E.N. Troyan, andS.W. Alekseyenko: Wavy processes in two-phase systems (in Russian). Acad. Sc. USSR, Novosybirsk, 1975.

    Google Scholar 

  58. Bitel, L., W.A. Malkov, S.W. Alekseyenko andS.M. Besedin: Experimental investigations of the behaviour of the conductivity gauge for wavy liquid film flow. Trans. IFFM, Polish Acad. Sci. Gdańsk, 1979.

    Google Scholar 

  59. Krzyżanowski, J.: Steam tunnel facility, design and program of investigations. UM Report No. UCHICH 03371-18-T, Univ. of Michigan, Ann Arbor, Mich. 1972.

    Google Scholar 

  60. Wurz, D.: Experimental investigation of shear driven waterfilm flow by moderate and high subsonic gas velocity (in German). Thesis, Univ. of Karlsruhe, 1971.

  61. Wurz, D.: Subsonic and supersonic gas-liquid film flows. Proc. 11th Fluid and Plasma Dynamics Conference, Seattle, Wash., 1978.

  62. Hammitt, F.G., J.B. Hwang andW. Kim: Liquid film thickness measurements in University of Michigan wet steam tunnel. 1976 ASME Cavitation Forum, March 1976, pp. 37/39.

  63. Cohen, L.S., andT.J. Hanratty: Effect of waves at a gas-liquid interface on a turbulent gas flow. J. Fluid Mech. Vol. 31, Pt. 3 (1968) p. 467.

    Article  Google Scholar 

  64. Kordyban, E.S.: Interfacial shear in two-phase wavy flow in closed horizontal channels. Trans. ASME, Ser. H, J. Fluids Engng. Vol. 96 (1974) p. 97.

    Google Scholar 

  65. Kordyban, E.S.: Long-wave disturbances in two-phase wavy flow. ASME Paper No. 75-WA/HT-28.

  66. Tailby, S.R., andS. Portalski: Trans. Inst. Chem. Engrs. (London) Vol. 40 (1962) p. 114.

    Google Scholar 

  67. Taitel, Y., andA.E. Duckler. A model for prediction flow regime transitions in horizontal and near-horizontal gas-liquid flow. AIChE J. Vol. 22 (1976) p. 47/55.

    Article  Google Scholar 

  68. Baker, O.: Simultaneous flow of oil and gas. Oil Gas J. Vol. 53 (July 1954), p. 185.

    Google Scholar 

  69. Hartley, D.E., andW. Murgatroyd: Criteria for break-up of thin liquid layers flowing isothermally over a solid surface. Int. J. Heat Mass Transfer Vol. 7 (1964) p. 1003.

    Article  MATH  Google Scholar 

  70. Brauer, H.: Strömung und Wärmeübergang bei Rieselfilmen. VDI-Forschungsheft 457. Düsseldorf: VDI-Verlag 1956.

    Google Scholar 

  71. Miles, J.W.: The hydrodynamic stability of a thin film of liquid in Uniform shearing motion. J. Fluid Mech. Vol. 8 (1960) p. 593.

    Article  MathSciNet  MATH  Google Scholar 

  72. Nayfeh, A.H., andW.S. Saric: Stability of a liquid film. AIAA J. Vol. 9 (1971) p. 750.

    Article  Google Scholar 

  73. Mikielewicz, J., andJ.R. Moszynski: Minimum thickness of a liquid film flowing vertically down a solid surface. Int. J. Heat and Mass Transfer Vol. 19 (1976) No. 7, pp. 771/76.

    Article  MATH  Google Scholar 

  74. Mikielewicz, J., andJ.R. Moszynski: Breakdown of a shear driven liquid film. Trans. Inst. Fluid flow Mach., Polish Acad. Sci. Gdansk No. 66 (1975).

  75. Anshus, B.: On the asymptotic solution to the falling film stability problem. Ind. Eng. Chem., Fundam. Vol. 11 (1972) No. 4, p. 502.

    Article  Google Scholar 

  76. Krantz, W.B., andS.L. Goren: Stability of thin liquid films flowing down a plane. Ind. Eng. Chem., Fundam. Vol. 10 (1971) No. 1, p. 91.

    Article  Google Scholar 

  77. Bankoff, S.G.: Stability of liquid flowing down a heated inclined plane. Int. J. Heat and Mass Transfer Vol. 14 (1971) p. 37.

    Google Scholar 

  78. Zuber, N., andF.W. Staub: Stability of dry patches forming in liquid films flowing over heated surfaces. Int. J. Heat and Mass Transfer Vol. 9 (1966) p. 897.

    Article  Google Scholar 

  79. Orell, A., andS.G. Bankoff: Formation of a dry spot in horizontal liquid film heated from below. Int. J. Heat and Mass Transfer Vol. 14 (1971) p. 1835.

    Article  Google Scholar 

  80. Ryley, D.J.: Univ.-Liverpool, personal communications withF.G. Hammitt 1975.

  81. Longson, B.: A new method of measuring the contact angle between liquid sodium and a solid. Rept. TRG-Memo-7096 (R), Risley Engr. and Mat’l. Lab., UKAEA, Jan. 1976.

  82. Semiczek-Szulc, S.: Preliminary investigation of liquidmetal wetting angle (in Polish). Report IFFM: Zeszyty Naukowe IMP PAN, No. 13/861/77, Gdansk, 1977.

  83. Semiczek-Szulc, S., andJ. Mikielewicz: The influence of surface roughness and the presence of a gaseous medium on the wettability of metal. 7th Symposium on Thermophysical properties. NBS-ASME, Gaitharsburg, Maryland, USA, 1977.

    Google Scholar 

  84. Gumkowski, S.: Experimental stability investigation of thin, shear driven water film (in Polish). Ph.D. Thesis, IFFM, Gdańsk, 1977.

    Google Scholar 

  85. Ihnatowicz, E.: Experimental investigation of evaporation and heat transfer of thin, shear driven water film (in Polish), Ph. D. Thesis, IFFM, Gdańsk, 1978.

    Google Scholar 

  86. Hässler, G.: Investigation of droplet break-up by aerodynamic forces (in German). Forsch. Ing.-Wes. Vol. 38 (1972) No. 6, pp. 183/92.

  87. Kreczkowski, S., andL. Bitel: Preliminary investigation of the droplet break-up mechanism in the air stream (in Polish). Report IFFM: Biuletyn IMP PAN No. 136 (823), 1975.

  88. Krzeczkowski, S.: Influence of the liquid viscosity on the droplet disruption time in the air stream (in Polish). Report IFFM: Biuletyn IMP PAN No. 174 (841), 1976.

  89. Krzeczkowski, S., andF.G. Hammitt: Experimental investigation of liquid droplet break-up duration. 1977 ASME Cavitation Forum (also available ORA Rept. 014571-2-I, Sept. 1976, Univ. Mich. Ann Arbor, Mich.).

    Google Scholar 

  90. Hinze, J.O.: Fundamentals of the hydrodynamic mechanism of splitting in dispersion process. AICHE J. Vol. 1 (1955) No. 3.

  91. Orzechowski, Z.: Liquid atomisation (in Polish). NT, Warszawa, 1976.

    Google Scholar 

  92. Krzeczkowski, S.: Dimensionless parameters relevant to the droplet disruption in gas flow (in Polish). Report IFFM: Biuletyn IMP PAN No. 45 (670), 1972.

  93. Puzyrewski, R., andS. Krzeczkowski: Some results of investigation on water-film break-up and motion of water drops in aerodynamic trail. IFFM Trans., 29–31, 1966, Inst. Fluid Flow Mach., Polish Acad. Sci. Gdańsk.

    Google Scholar 

  94. Weigle, B., andH. Severin: Investigation of relationship between gas velocity droplet stream structure, and erosion rate-time structure (in Polish). IFFM Bulletin, No. arch. 273/71, Inst. Fluid Flow Mach., Polish Acad. Sci. Gdańsk, 1971.

    Google Scholar 

  95. Valha, J.: Liquid film disintegration on the trailing edges of swept bodies. Strojnicky Časopis, Ročnik XXI, cislo 3, 1970, Prague, Czech.

  96. Valha, J.: Rozpad kapalinovych filmuo na odtokove hrane profili pri vysokych rychlostech. Proc. 4th Conf. Steam Turbines Large Output, Pilsen, Czech, 1972.

  97. Faddeev, J.P.: Structure of erosion inducing streams of droplets in axial clearance of low pressure part of the turbine. Proc. 3rd. Conf. Steam Turbines of Great Output, Inst. Fluid Flow Mach., Polish Acad. Sci. Gdansk, 1973.

  98. Moore, H.J., andP. Sculpher: Conditions producing concentrated erosion in large steam turbines. Proc. Inst. Mech. Eng. Vol. 184 (1969–1970), pt 3 G (III), London, 1970.

  99. Williams, G.J., andH.J. Lord: Measurements of coars water distribution in the low pressure cylinders of operating steam turbines. Proc. Inst. Mech. Eng. Vol. 190, 4/76, London, 1976.

    Google Scholar 

  100. Krzeczkowski, S., W. Kim, F.G. Hammitt andJ.B. Hwang: Investigations of secondary liquid phase structure in steam wake. Trans. ASME, J. Fluids Engr., 1977 (also available ORA Rept. UMICH 014571-1-T, Univ. Mich. Ann Arbor, Mich.).

    Google Scholar 

  101. Kim, W.: Study of liquid films, fingers and droplet motion for steam turbine blading erosion problem. Ph. D. Thesis, Univ. Michigan, Ann Arbor, Mich., 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammitt, F.G., Krzeczkowski, S. & Krzyżanowski, J. Liquid film and droplet stability consideration as applied to wet steam flow. Forsch Ing-Wes 47, 1–14 (1981). https://doi.org/10.1007/BF02560457

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02560457

Keywords

Navigation