Abstract
The recently introduced quantum antibracket is further generalized such that the odd operator Q can be arbitrary. We give exact formulas for quantum antibrackets of arbitrary higher orders and for their generalized Jacobi identities. We review applications of the quantum antibrackets to the BV and BFV-BRST quantizations and include some new aspects.
Similar content being viewed by others
References
I. A. Batalin and R. Marnelius,Phys. Lett. B,434, 312 (1998).
J. A. Schouten,Proc. K. Ned. Akad. Wetensc., Ser. A 2, 449 (1940); “On the differential operators of first order in tensor calculus”, in:Convegno Internazionale di Geometria Differenzialc (Italy, Sept. 20–26. 1953) (Promosso dalla Unione Matematica Italiana), Edizioni Cremonese delle Casa editrice Perrella, Roma (1954). p. 1; C. Buttin,C. R. Acad. Sci. Paris,269, A87 (1969); J. Zinn-Justin, “Renormalization of gauge theories,” in:Trends in Elementary Particle Theory (Intl. Summer Inst. on Theoretical Physics, Bonn, 1974) (H. Rollnik and K. Dietz, eds.) (Lect. Notes Phys., Vol. 37), Springer, Berlin (1975), p. 2; E. Witten,Mod. Phys. Lett. A,5, 487 (1990).
I. A. Batalin and G. A. Vilkovisky,Phys. Lett. B,102, 27 (1981);Phys. Rev. D,28, 2567 (1983).
I. A. Batalin and R. Marnelius,Phys. Lett. B,441, 243 (1998).
I. A. Batalin and R. Marnelius, “Dualities between Poisson brackets and antibrackets” Preprint hep-th/9809210 (1998);Int. J. Mod. Phys. A (forthcoming).
I. A. Batalin and R. Marnelius, “QuantumSp(2)-antibrackets and open groups,” Preprint hep-th/9809208 (1998);Nucl. Phys. B (forthcoming).
I. A. Batalin, P. M. Lavrov, and I. V. Tyutin,J. Math. Phys.,31, 1487 (1990);32, 532, 2513 (1990).
C. M. Hull,Int. J. Mod. Phys. A,5, 1871 (1990); M. Henneaux,Phys. Lett. B,282, 372 (1992); G. Barnich. R. Constantinescu, and P. Grégoire,Phys. Lett. B,293, 353 (1992); P. Grégoire and M. Henneaux.J. Phys. A,26, 6073 (1993); P. H. Damgaard and F. De Jonghe,Phys. Lett. B,305, 59 (1993).
I. A. Batalin, R. Marnelius, and A. M. Semikhatov,Nucl. Phys. B,446, 249 (1995); I. A. Batalin and R. Marnelius.Nucl. Phys. B,465, 521 (1996).
J. L. Koszul,Astérisque, 257 (1985); F. Akman, “On some generalizations of Batalin-Vilkovysky algebras.” Preprint q-alg/9506027 (1995); K. Bering, P. H. Damgaard, and J. Alfaro,Nucl. Phys. B,478, 459 (1996); I. A. Batalin, K. Bering, and P. H. Damgaard,Phys. Lett. B,389, 673 (1996).
I. A. Batalin and I. V. Tyutin,Int. J. Mod. Phys. A,8, 2333 (1993).
R. Marnelius,Int. J. Mod. Phys. A 5, 329 (1990).
I. A. Batalin and G. A. VilkoviskyPhys. Lett. B,69, 309 (1977); E. S. Fradkin and T. E. Fradkina.Phys. Lett. B,72, 343 (1978); I. A. Batalin and E. S. Fradkin,Phys. Lett. B,122, 157 (1983).
I. A. Batalin and E. S. Fradkin,Phys. Lett. B,128, 303 (1983);Riv. Nuovo Cimento,9, 1 (1986);Ann. Inst. H. Poincaré,49, 145 (1988).
I. A. Batalin,J. Math. Phys.,22, 1837 (1981).
G. Gülöp and R. Marnelius,Nucl. Phys. B,456, 442 (1995); R. Marnelius and N. Sandström, “Basics of BRST quantization,” Preprint hep-th/9810125 (1998).
G. Curci and R. Ferrari,Phys. Lett. B,63, 91 (1976); I. Ojima,Progr. Theor. Phys. Lett.,64, 625 (1980); S. Hwang,Nucl. Phys. B,231, 386 (1984).
Author information
Authors and Affiliations
Additional information
Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 120, No. 3 pp. 358–379, September, 1999.
Rights and permissions
About this article
Cite this article
Batalin, I.A., Marnelius, R. General quantum antibrackets. Theor Math Phys 120, 1115–1132 (1999). https://doi.org/10.1007/BF02557237
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02557237