Skip to main content
Log in

General quantum antibrackets

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The recently introduced quantum antibracket is further generalized such that the odd operator Q can be arbitrary. We give exact formulas for quantum antibrackets of arbitrary higher orders and for their generalized Jacobi identities. We review applications of the quantum antibrackets to the BV and BFV-BRST quantizations and include some new aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Batalin and R. Marnelius,Phys. Lett. B,434, 312 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  2. J. A. Schouten,Proc. K. Ned. Akad. Wetensc., Ser. A 2, 449 (1940); “On the differential operators of first order in tensor calculus”, in:Convegno Internazionale di Geometria Differenzialc (Italy, Sept. 20–26. 1953) (Promosso dalla Unione Matematica Italiana), Edizioni Cremonese delle Casa editrice Perrella, Roma (1954). p. 1; C. Buttin,C. R. Acad. Sci. Paris,269, A87 (1969); J. Zinn-Justin, “Renormalization of gauge theories,” in:Trends in Elementary Particle Theory (Intl. Summer Inst. on Theoretical Physics, Bonn, 1974) (H. Rollnik and K. Dietz, eds.) (Lect. Notes Phys., Vol. 37), Springer, Berlin (1975), p. 2; E. Witten,Mod. Phys. Lett. A,5, 487 (1990).

    MathSciNet  Google Scholar 

  3. I. A. Batalin and G. A. Vilkovisky,Phys. Lett. B,102, 27 (1981);Phys. Rev. D,28, 2567 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  4. I. A. Batalin and R. Marnelius,Phys. Lett. B,441, 243 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. I. A. Batalin and R. Marnelius, “Dualities between Poisson brackets and antibrackets” Preprint hep-th/9809210 (1998);Int. J. Mod. Phys. A (forthcoming).

  6. I. A. Batalin and R. Marnelius, “QuantumSp(2)-antibrackets and open groups,” Preprint hep-th/9809208 (1998);Nucl. Phys. B (forthcoming).

  7. I. A. Batalin, P. M. Lavrov, and I. V. Tyutin,J. Math. Phys.,31, 1487 (1990);32, 532, 2513 (1990).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. C. M. Hull,Int. J. Mod. Phys. A,5, 1871 (1990); M. Henneaux,Phys. Lett. B,282, 372 (1992); G. Barnich. R. Constantinescu, and P. Grégoire,Phys. Lett. B,293, 353 (1992); P. Grégoire and M. Henneaux.J. Phys. A,26, 6073 (1993); P. H. Damgaard and F. De Jonghe,Phys. Lett. B,305, 59 (1993).

    MATH  MathSciNet  Google Scholar 

  9. I. A. Batalin, R. Marnelius, and A. M. Semikhatov,Nucl. Phys. B,446, 249 (1995); I. A. Batalin and R. Marnelius.Nucl. Phys. B,465, 521 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  10. J. L. Koszul,Astérisque, 257 (1985); F. Akman, “On some generalizations of Batalin-Vilkovysky algebras.” Preprint q-alg/9506027 (1995); K. Bering, P. H. Damgaard, and J. Alfaro,Nucl. Phys. B,478, 459 (1996); I. A. Batalin, K. Bering, and P. H. Damgaard,Phys. Lett. B,389, 673 (1996).

  11. I. A. Batalin and I. V. Tyutin,Int. J. Mod. Phys. A,8, 2333 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. R. Marnelius,Int. J. Mod. Phys. A 5, 329 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  13. I. A. Batalin and G. A. VilkoviskyPhys. Lett. B,69, 309 (1977); E. S. Fradkin and T. E. Fradkina.Phys. Lett. B,72, 343 (1978); I. A. Batalin and E. S. Fradkin,Phys. Lett. B,122, 157 (1983).

    Article  ADS  Google Scholar 

  14. I. A. Batalin and E. S. Fradkin,Phys. Lett. B,128, 303 (1983);Riv. Nuovo Cimento,9, 1 (1986);Ann. Inst. H. Poincaré,49, 145 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  15. I. A. Batalin,J. Math. Phys.,22, 1837 (1981).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. G. Gülöp and R. Marnelius,Nucl. Phys. B,456, 442 (1995); R. Marnelius and N. Sandström, “Basics of BRST quantization,” Preprint hep-th/9810125 (1998).

    Article  ADS  Google Scholar 

  17. G. Curci and R. Ferrari,Phys. Lett. B,63, 91 (1976); I. Ojima,Progr. Theor. Phys. Lett.,64, 625 (1980); S. Hwang,Nucl. Phys. B,231, 386 (1984).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 120, No. 3 pp. 358–379, September, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batalin, I.A., Marnelius, R. General quantum antibrackets. Theor Math Phys 120, 1115–1132 (1999). https://doi.org/10.1007/BF02557237

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02557237

Keywords