Skip to main content
Log in

Application of time series spectral analysis theory: analysis of cardiovascular variability signals

  • Signal Processing
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The paper focuses on the most important application problems commonly encountered in spectral analysis of short-term (less than 10 min) recordings of cardiovascular variability signals (CVSs), critically analysing the different approaches to these problems presented in the literature and suggesting practical solutions based on sound theoretical and empirical considerations. The Blackman-Tukey (BT) and Burg methods have been selected as the most representative of classical and AR spectral estimators, respectively. For realistic simulations, ‘synthetic’ CVSs are generated as AR processes whose parameters are estimated on corresponding time series of normal, post-myocardial infarction and congestive heart failure subjects. The problem of resolution of spectral estimates is addressed, and an empirical method is proposed for model order selection in AR estimation. The issue of the understandability and interpretability of spectral shapes is discussed. The problem of non-stationarity and removing trends is dealt with. The important issue of identification and estimation of spectral components is discussed, and the main advantages and drawbacks of spectral decomposition algorithms are critically evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1974): ‘A new look at the statistical model identification’,IEEE Trans.,Ac-19, pp. 716–723

    MATH  MathSciNet  Google Scholar 

  • Andersen, N. (1974): ‘On the calculation of filter coefficients for maximum entropy spectral analysis’,Geophys..39, pp. 69–72

    Article  Google Scholar 

  • Baselli, G., Gerutti, S., Civardi, S., Liberati, D., Lombardi, F., Malliani, A., andPagani, M. (1986): ‘Spectral and cross-spectral analysis of heart rate and arterial blood pressure variability signals’,Comp. Biom. Res.,19, pp. 520–534

    Article  Google Scholar 

  • Bendat, J. S., andPiersol, A. G. (1986): ‘Randon data—analysis and measurement procedures’ (John Wiley, New York) 2nd edn.

    Google Scholar 

  • Berger, R. D., Saul, J. P., andCohen, R. J. (1989): ‘Transfer function analysis of autonomic regulation, I. Canine atrial rate response’,Am. J. Physiol.,256, pp. 142–152

    Google Scholar 

  • Blackman, R. B., andTukey, J. W. (1959): ‘The measurement of power spectrum from the point of view of communications engineering’ (Dover, New York)

    Google Scholar 

  • Box, G. E. P., andJenkins, G. M. (1970): ‘Time series analysis: forecasting and control’ (Holden Day, San Francisco)

    MATH  Google Scholar 

  • Burg, J. P. (1968): ‘A new analysis technique for time series data’ NATO Advanced Study Institute on Signal Processing, Enschede, The Netherlands

  • Childers, D. G. (Ed) (1978): ‘Modern spectrum analysis’ (IEEE Press, New York)

    Google Scholar 

  • de Boer, R. W., Karemaker, J. M., andStrackee, J. (1985): ‘Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects, I: a spectral analysis approach’,Med. Biol. Eng. Comput.,23, pp. 352–358

    Article  Google Scholar 

  • de Boer, R. W., Karemaker, J. M., andStrackee, J. (1987): ‘Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat to beat model’,Am. J. Physiol. (Heart Circ. Physiol., 22),253, pp. 680–689

    Google Scholar 

  • Di Rienzo, M., Castiglioni, P., Mancia, G., Parati, G., andPedotti, A. (1989): ‘24 h sequential spectral analysis of arterial blood pressure and pulse interval in free-moving subjects’,IEEE Trans.,BME-36, pp. 1066–1074

    Google Scholar 

  • Harris, F. J. (1978): ‘On the use of windows for harmonic analysis with the discrete Fourier transform’,Proc. IEEE.,66, pp. 51–83

    Article  Google Scholar 

  • Johnsen, S. J., andAndersen, N. (1978): ‘On power estimation in maximum entropy spectral analysis’,Geophys..43, pp. 681–690

    Article  Google Scholar 

  • Kamath, M. V., Upton, A. R. M., Talalla, A., andFallen, E. L. (1992): ‘Effect of vagal nerve electrostimulation on the power spectrum of heart rate variability in man’,Pace.,15, pp. 235–243

    Google Scholar 

  • Kamath, M. V., andFallen, E. L. (1993): ‘Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function’,Crit. Rev. Biomed. Eng..21, pp. 245–311

    Google Scholar 

  • Kaveh, M., andCooper, G. (1976): ‘An empirical investigation of the properties of the autoregressive spectral estimator’,IEEE Trans.,IT-22, pp. 313–323

    MATH  Google Scholar 

  • Kay, S. M. (1988): ‘Modern spectral estimation: theory and applications’ (Prentice Hall, Englewood Cliffs, New Jersey)

    MATH  Google Scholar 

  • Kitney, R. I. (1980): ‘An analysis of thermoregulatory influences on heart rate variability’in Kitney, R. I. andRompelman, O. (Eds.): ‘The study of heart rate variability’ (Clarendon Press, Oxford)

    Google Scholar 

  • Kitney, R. I., Fulton, T., McDonald, A. H., andLinkens, D. A. (1985): ‘Transient Interactions between blood pressure, respiration and heart rate in man’,J. Biomed. Eng.,7, pp. 217–224

    Google Scholar 

  • Kleiger, R. E., Miller, J. P., Bigger, J. T., Jr., Moss, A. J., and the Multicenter Post-Infarction Research Group (1987): ‘Decreased heart rate variability and its association with increased mortality after acute myocardial infarction’,Am J. Cardiol.,59, pp. 256–262

    Article  Google Scholar 

  • Lacoss, R. T. (1971): ‘Data adaptive spectral analysis methods’,Geophys.,36, pp. 661–675

    Article  Google Scholar 

  • Linkens, D. A. (1979): ‘Empirical rules for the selection of parameters for auto-regressive spectral analysis of biomedical rhythms’,Signal Process.,1, pp. 243–258

    Article  Google Scholar 

  • Ljung, G. M., andBox, G. E. P. (1978): ‘On a measure of lack of fit in time series models’,Biometrika. 65, pp. 297–303

    Article  MATH  Google Scholar 

  • Malliani, A., Pagani, M., Lombardi, F., andCerutti, S. (1991): ‘Cardiovascular neural regulation explored in the frequency domain’,Circ.,84, pp. 482–492

    Google Scholar 

  • Marple, S. J., Jr. (1982): ‘Frequency resolution of Fourier and maximum entropy spectral estimates’,Geophys.,47, pp. 1303–1307

    Article  Google Scholar 

  • Marple, S., Jr. (1987): ‘Digital spectral analysis with applications’ (Prentice-Hall, Englewood Cliffs, New Jersey)

    Google Scholar 

  • Mortara, A., La Rovere, M. T., Signorini, M. G., Pantaleo, P., Pinna, G. D., Martinelli, L., Ceconi, C., Cerutti, S., andTavazzi, L. (1994): ‘Can power spectral analysis of heart rate variability identify a high risk subgroup of congestive heart failure patients with excessive sympathetic activation? A pilot study before and after heart transplantation’,Br. Heart J.,71, pp. 420–430

    Google Scholar 

  • Myers, G. A., Martin, G. J., Magid, N. M., Barnett, P. S., Schaad, J. W., Weiss, J. S., Lesch, M., andSinger, D. H. (1986): ‘Power spectral analysis of heart rate variability in sudden cardiac death: comparison to other methods’,IEEE Trans.,BME-33, pp. 1149–1156

    Google Scholar 

  • Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrome, G., Malfatto, G., Dell'Orto, S., Piccaluga, E., Turiel, M., Baselli, G., Cerutti, S., andMalliani, A. (1986): ‘Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog’,Circ. Res.,59, pp. 178–193

    Google Scholar 

  • Papoulis, A. (1984): ‘Signal analysis’ (McGraw-Hill, New York)

    MATH  Google Scholar 

  • Pinna, G. D., Orsi, G., andCorsico, G. (1992): ‘Effect of record length on power spectral estimation of the heart variability signal’, Proc. IEEE Computers in Cardiology 1992 Conf., IEEE Computer Society Press, Los Alamitos, pp. 261–264

    Google Scholar 

  • Pinna, G. D., Maestri, R., andDi Cesare, A. (1993): ‘On the use of Akaike information criterion in AR spectral analysis of cardiovascular variability signals: a case report study’. Proc. IEEE Computers in Cardiology 1993 Conf., IEEE Computer Society Press, Los Alamitos, pp. 471–474

    Google Scholar 

  • Priestley, M. B. (1981): ‘Spectral analysis and time series’ (Academic Press, London, UK)

    MATH  Google Scholar 

  • Rottman, J. N., Steinman, R. C., Albrecht, P., Bigger, J. T., Jr., Rolnitzky, L. M., andFleiss, J. L. (1990): ‘Efficient estimation of the heart period power spectrum suitable for physiologic or pharmacologic studies’,Am. J. Cardiol.,66, pp. 1522–1524

    Article  Google Scholar 

  • Saul, J. P., Arai, Y., Berger, R. D., Lilly, L. S., Colucci, W. S., andCohen, R. J. (1988): ‘Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis’,Am. J. Cardiol.,61, pp. 1292–1299

    Article  Google Scholar 

  • Zetterberg, L. H. (1969): ‘Estimation of parameters for a linear difference equation with application to EEG analysis’,Math. Biosci.,5, pp. 227–275

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinna, G.D., Maestri, R. & Di Cesare, A. Application of time series spectral analysis theory: analysis of cardiovascular variability signals. Med. Biol. Eng. Comput. 34, 142–148 (1996). https://doi.org/10.1007/BF02520019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02520019

Keywords

Navigation