Skip to main content
Log in

Origin of fatty acid synthesis: Thermodynamics and kinetics of reaction pathways

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, we here propose an alternative pathway of primitive fatty acid synthesis that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy (ATP). Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alborz M, Douglas, KT, Rullo GR, Yaggi NF (1982) Malonycoenzyme A models. Part 2. The methylene deprotonation step of the E1 cB acyl transfer of malonic acid thiolmonoesters. J Chem Soc Perkin Trans 2:1681–1687

    Google Scholar 

  • Bender ML, Bergeron RJ, Komiyama M (1984) The bioorganic chemistry of enzymatic catalysis. Wiley, New York

    Google Scholar 

  • Beytia ED, Porter JW (1976) Biochemistry of polyisoprenoid biosynthesis. In: Snell EE (ed) Annual review of biochemistry, vol 45. Annual Reviews, Palo Alto CA, p 113

    Google Scholar 

  • Borowska Z, Mauzerall D (1988) Photoreduction of carbon dioxide by aqueous ferrous ion: an alternative to the strongly reducing atmosphere for the chemical origin of life. Proc Natl Acad Sci USA 85:6577–6580

    Article  PubMed  CAS  Google Scholar 

  • Broda E (1971) The evolution of bioenergetic processes. In: Butler JAV, Noble D (eds) Progress in biophysics and molecular biology, vol 21. Pergamon, New York, p 145

    Google Scholar 

  • Bruice TC, Benkovic SJ (1966a) Bioorganic mechanisms, vol 1. Benjamin, New York, p 259

    Google Scholar 

  • Bruice TC, Benkovic SJ (1966b) Bioorganic mechanisms, vol 2. Benjamin, New York, p 181

    Google Scholar 

  • Busca G, Lamotte J, Lavalley J, Lorenzelli V (1987) FT-IR study of the adsorption and transformation of formaldehyde on oxide surfaces. J Am Chem Soc 109:5197–5202

    Article  CAS  Google Scholar 

  • Buvet R, Le Port L (1973) Non-enzymatic origin of the metabolism. Space Life Sci 4:434–447

    Article  PubMed  CAS  Google Scholar 

  • Caplow M (1965) Studies of the mechanism of biotin catalysis. J Am Chem Soc 87:5447–5785

    Article  Google Scholar 

  • Clarke PH, Elsden SR (1980) The earliest catabolic pathways. J Mol Evol 15:333–338

    Article  PubMed  CAS  Google Scholar 

  • Douglas KT (1986) Elimination-addition pathways for thiol esters. Acc Chem Res 19:186–192

    Article  CAS  Google Scholar 

  • Eakin RE (1963) An approach to the evolution of metabolism. Proc Natl Acad Sci USA 49:360–366

    Article  PubMed  CAS  Google Scholar 

  • Eichberg J, Sherwood E, Epps DE, Oró J (1977) Cyanamide mediated syntheses under plausible primitive earth conditions. IV. The synthesis of acylglycerols. J Mol Evol 10:221–230

    Article  PubMed  CAS  Google Scholar 

  • Epps DE, Sherwood E, Eichberg J, Oró J (1978) Cyanamide mediated syntheses under plausible prebiotic conditions. V. The synthesis of phosphatidic acids. J Mol Evol 11:279–292

    Article  PubMed  CAS  Google Scholar 

  • Epps DE, Nooner DW, Eichberg J, Sherwood E, Oró J (1979) Cyanamide mediated synthesis under plausible primitive conditions. VI. The synthesis of glycerol and glycerophosphates. J Mol Evol 14:235–241

    Article  PubMed  CAS  Google Scholar 

  • Feather MS, Harris JF (1973) Dehydration reactions of carbohydrates. In: Tipson RS, Horton D (eds) Advances in carbohydrate chemistry and biochemistry, vol 28. Academic Press, New York, p 161

    Google Scholar 

  • Fedoronko M, Konigstein J (1969) Kinetics of mutual isomerization of trioses and their dehydration to methylglyoxal. Collect Czech Chem Commun 34:3881–3894

    CAS  Google Scholar 

  • Feingold DS, Hoffee PA (1972) Other deoxy sugar aldolases. In: Boyer PD (ed) The enzymes, ed 3, vol VII. Academic Press, New York, p 303

    Google Scholar 

  • Fluharty AL (1974) Biochemistry of the thiol group. In: Pata S (ed) The chemistry of the thiol group, part 1. Wiley, London, p 589

    Google Scholar 

  • Fouquet G, Merger F, Platz R (1979) Über die Tischtschenkoreaction von aldolen. Justus Liebigs Ann Chem 1591–1601

  • Forsen S, Nilsson (1970) Enolization. In: Zabicky J (ed) The chemistry of the carbonyl group, vol 2. Interscience, New York, p 157

    Google Scholar 

  • Gabel NW, Ponnamperuma C (1967) Model for origin of monosaccharides. Nature (London) 216:453–454

    Article  CAS  Google Scholar 

  • Gehring U, Lynen F (1972) Thiolase. In: Boyer PD (ed) The enzymes, ed 3, vol 7. Academic Press, New York, p 391

    Google Scholar 

  • Getoff N, Scholes G, Weiss J (1960) Reduction of carbon dioxide in aqueous solutions under the influence of radiation. Tetrahedron Lett 17–23

  • Hall SS, Doweyko AM, Jordan F (1978) Glyoxalase I enzyme studies. 4. General base catalyzed enediol proton transfer rearrangement of methyl- and phenylglyoxalglutathionylhemithiol acetal to S-lactoyl and S-mandeloyglutathione followed by hydrolysis. A model for the glyoxalase enzyme system. J Am Chem Soc 100:5934–5939

    Article  CAS  Google Scholar 

  • Harsch G, Harsch M, Bauer H, Voelter W (1983) Produktverteilung und mechanismus der gesamtreaktion der formosereaktion. Z Naturforsch Teil B 38:1269–1280

    Google Scholar 

  • Harsch G, Bauer H, Voelter W (1984) Kinetik, katalyse und mechanismus der sekundarreaktion in der schlussphase der formose-reaktion. Justus Liebigs Ann Chem 623–635

  • Hartman H (1975) Speculations on the origin and evolution of metabolism. J Mol Evol 4:359–370

    Article  PubMed  CAS  Google Scholar 

  • Hauge JG (1956) On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. IV. Kinetic studies. J Am Chem Soc 78:5266–5272

    Article  CAS  Google Scholar 

  • Higgins MJP, Kornblatt JA, Rudney H (1972) Acyl-CoA ligases. In: Boyer PD (ed) The enzymes, ed 3, vol VII. Academic Press, New York, p 407

    Google Scholar 

  • Jencks WP (1969a) Catalysis in chemistry and enzymology, chapter 5. McGraw-Hill, New York, p 282

    Google Scholar 

  • Jencks WP (1969b) Catalysis in chemistry and enzymology, chapter 1. McGraw-Hill, New York, p 7

    Google Scholar 

  • Jencks WP (1975) Binding energy, specificity, and enzymatic catalysis: the circle effect. In: Meister A (ed) Advances in enzymology, vol 43. Wiley, New York, p 219

    Google Scholar 

  • Jencks WP (1976) Free energies of hydrolysis and decarboxylation. In: Fasman GD (ed) Handbook of biochemistry and molecular biology, ed 3. Physical and chemical data, vol 1. CRC Press, Cleveland, p 296

    Google Scholar 

  • Jones WJ, Nagle DP, Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol Rev 51:135–177

    PubMed  CAS  Google Scholar 

  • Keinan E, Greenspoon N (1989) Reduction of α,β-unsaturated carbonyl compounds. In: Patai S (ed) The chemistry of enones. Wiley, New York, p 923

    Google Scholar 

  • Knappe J (1970) Mechanism of biotin action. In: Snell EE (ed) Annual review of biochemistry, vol 39. Annual Reviews, Palo Alto CA, p 757

    Google Scholar 

  • Knowles JR (1989) The mechanism of biotin-dependent enzymes. In: Richardson CC (ed) Annual review of biochemistry, vol 58. Annual Reviews, Palo Alto CA, p 195

    Google Scholar 

  • Kobuke Y, Yoshida J (1978) Decarboxylative acylation of thiolmalonate. A model for the biosynthesis of fatty acids and polyketides. Tetrahedron Lett 367–370

  • Koningsberger VV, Overbeek JTG (1955) The hydrolysis and aminolysis of ethyl thioacetate. III. Rate constants at 25°C, activation energies and probability factors. Koninkl Ned Acad Wetenschap Proc, Ser B 58:49–55

    Google Scholar 

  • Krampitz LO (1969) Catalytic functions of thiamine diphosphate. In: Snell EE (ed) Annual review of biochemistry, vol 38. Annual Reviews, Palo Alto CA, p 213

    Google Scholar 

  • Lindstrom LA (1979) Formation and further reaction of 3-deoxytetrulose during treatment of (1→4)-linked xylose oligomers with alkali. Carbohydr Res 69:269–271

    Article  CAS  Google Scholar 

  • Loach PA (1976) Oxidation-reduction potentials, absorbance bands and molar absorbance of compounds used in biochemical studies. In: Fasman GD (ed) Handbook of biochemistry and molecualr biology, ed 3, vol 1. CRC Press, Cleveland, p 122

    Google Scholar 

  • Lynen F, Wieland O (1955) β-Ketoreductase. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic Press, New York, p 566

    Chapter  Google Scholar 

  • Malmstrom BG (1961) Hydration and dehydration (survey). In: Boyer PD, Lardy H, Myrback K (eds) The enzymes, ed 2, vol 5. Academic Press, New York, p 455

    Google Scholar 

  • Miller SL (1957) The formation of organic compounds on the primitive Earth. Ann NY Acad Sci 69:260–275

    PubMed  CAS  Google Scholar 

  • Moss J, Lane MD (1971) The biotin-dependent enzymes. In: Meister A (ed) Advances in enzymology, vol 35. Interscience, New York, p 321

    Google Scholar 

  • Miziorko HM (1985) 3-Hydroxy-3-methylglutaryl-CoA synthase from chicken liver. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 110, part A. Academic Press, New York, p 19

    Google Scholar 

  • Mizuno T, Weiss AH (1974) Synthesis and utilization of formose sugars. In: Tipson RS, Horton D (eds) Advances in carbohydrate chemistry and biochemistry, vol 29. Academic Press, New York, p 173

    Google Scholar 

  • Nooner DW, Oró J (1979) Synthesis of fatty acids by a closed system Fischer-Tropsch process. In: Kugler EL, Steffgen FW (eds) Hydrocarbon synthesis from carbon monoxide and hydrogen. Advances in chemistry series, no. 178. American Chemical Society, Washington DC, p 159

    Google Scholar 

  • Ogita T, Knowles JR (1988) On the intermediacy of carboxyphosphate in biotin-dependent carboxylations. Biochemistry 27:8028–8033

    Article  PubMed  CAS  Google Scholar 

  • Page MI (1977) Entropy, binding energy, and enzymatic catalysis. Angew Chem Int Ed Engl 16:449–459

    Article  Google Scholar 

  • Patai S (ed) (1966) The chemistry of the carbonyl group. Interscience, New York

    Google Scholar 

  • Pigman W, Anet EFLJ (1972) Mutarotations and actions of acids and bases. In: Pigman W, Horton D (eds) The carbohydrates, vol 1A. Academic Press, New York, p 165

    Google Scholar 

  • Pinto JP, Gladstone GR, Yung YL (1980) Photochemical production of formaldehyde in earth's primitive atmosphere. Science 210:183–185

    Article  CAS  Google Scholar 

  • Porter JW, Spurgeon SL (eds) (1981) Biosynthesis of isoprenoid compounds. Wiley, New York

    Google Scholar 

  • Poulter D, Rilling HC (1981) Prenyl transferases and isomerase. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds, vol 1. Wiley, New York, p 161

    Google Scholar 

  • Qureshi N, Porter JW (1981) Conversion of acetyl-coenzyme A to isopentenyl pyrophosphate. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds, vol 1. Wiley, New York, p 47

    Google Scholar 

  • Rao M, Eichberg J, Oró J (1987) Synthesis of phosphatidylethanolamine under possible primitive earth conditions. J Mol Evol 25:1–6

    Article  PubMed  CAS  Google Scholar 

  • Rastetter WH, Adams J (1981) α-Keto acid dehydrogenases: a chemical model. J Org Chem 46:1882–1887

    Article  CAS  Google Scholar 

  • Reid C, Orgel LE (1967) Synthesis of sugars in potentially prebiotic conditions. Nature 216:455

    Article  PubMed  CAS  Google Scholar 

  • Sauers CK, Jencks WP, Groh S (1975) The alcohol-bicarbonate-water system. Structure-reactivity studies on the equilibria for formation of alkyl monocarbonates and on the rates of their decomposition in aqueous alkali. J Am Chem Soc 97:5546–5553

    Article  CAS  Google Scholar 

  • Sellin S, Mannervik B (1983) Reversal of the reaction catalyzed by glyoxalase 1. Calculation of the equilibrium constant for the enzymatic reaction. J Biol Chem 258:8872–8875

    PubMed  CAS  Google Scholar 

  • Shinkai S, Hamada H, Kusano Y, Manabe O (1979) Coenzyme models. Part 16. Studies of general-acid catalysis in the NADH model reduction. J Chem Soc Perkin Trans 2, 699–702

    Google Scholar 

  • Speck JC (1958) The Lobry de Bruyn-Alberda van Ekenstein transformation. In: Wolfrom ML (ed) Advances in carbohydrate chemistry, vol 13. Academic Press, New York, p 63

    Google Scholar 

  • Stern JR (1961) Crotonase. In: Boyer PD, Lardy H, Myrback K (eds) The enzymes, ed 2, vol 5. Academic Press, New York, p 511

    Google Scholar 

  • Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley, New York

    Google Scholar 

  • Theander O (1962) Dicarbonyl carbohydrates. In: Wolfrom ML, Tipson RS (eds) Advances in carbohydrate chemistry, vol 17. Academic Press, New York, p 223

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180

    PubMed  CAS  Google Scholar 

  • Tilley BF, Porter DW, Gracy RW (1973) Metal-ion catalysis of aldose-ketose isomerizations in acidic solutions. Carbohydr Res 27:289–296

    Article  PubMed  CAS  Google Scholar 

  • Vander Jagt DL, Daub E, Krohn JA, Han LB (1975) Effects of pH and thiols on the kinetics of yeast glyoxalase 1. An evaluation of the random pathway mechanism. Biochemistry 14: 3669–3675

    Article  Google Scholar 

  • Weber AL (1981) Formation of pyrophosphate, tripolyphosphate, and phosphorylimidazole with the thioester, N,S-diacetylcysteine, as the condensing agent. J Mol Evol 18:24–29

    Article  PubMed  CAS  Google Scholar 

  • Weber AL (1984) Nonenzymatic formation of “energy-rich” lactoyl and glyceroyl thioesters from glyceraldehyde and a thiol. J Mol Evol 20:157–166

    Article  PubMed  CAS  Google Scholar 

  • Weber AL (1985) Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution. J Mol Evol 21:351–355

    Article  PubMed  CAS  Google Scholar 

  • Weber AL (1987) The triose model: glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions. Origins Life 17:107–119

    Article  CAS  Google Scholar 

  • Weber AL, Hsu V (1990) Energy-rich glyceric acid oxygen esters: implications for the origin of glycolysis. Origins Life 20: 145–150

    Article  CAS  Google Scholar 

  • Wheeler OH (1966) Reduction of carbonyl groups. In: Patai S (ed) The chemistry of the carbonyl group. Interscience, London, p 507

    Google Scholar 

  • Wilson GE, Hess A (1980) Acylation of thiol ester enolate anions. J Org Chem 45:2766–2772

    Article  CAS  Google Scholar 

  • Zabicky J (ed) (1970) The chemistry of the carbonyl group, vol 2. Interscience, New York

    Google Scholar 

  • Zubay G (1983) Biochemistry, chapter 13. Addison-Wesley, Reading MA, p 471

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, A.L. Origin of fatty acid synthesis: Thermodynamics and kinetics of reaction pathways. J Mol Evol 32, 93–100 (1991). https://doi.org/10.1007/BF02515381

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515381

Key words

Navigation