Skip to main content
Log in

Deformation and fracture model for a multicomponent elastoplastic porous medium with continuous variation of physicomechanical characteristics

  • Scientific and Technical Section
  • Published:
Strength of Materials Aims and scope

Abstract

A mathematical model and a procedure of solving problems for the development of functionally gradient porous materials ensuring the desired distribution of stress-strain state parameters over the volume of the structure under explosion and impact loadings are proposed. The choice of the model is based on general theoretical concepts and is validated by comparison of the calculated results with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

v i :

velocity-vector components

S ij :

stress-deviator components

E :

specific internal energy

ɛ ij :

strain-rate-deviator components

σ ij :

stress-tensor components

δ ij :

Kronecker delta

D/Dt :

Jaumann derivative

e ij :

strain-rate-tensor components

μ:

shear modulus

σ:

yield stress

f :

porosity parameter

d s , η:

material constants

V s :

specific volume of a matrix

V p ,V :

specific volume of pores and a porous medium, respectively

P s :

pressure in a matrix

σ s , μ s :

yield stress and shear modulus of a matrix

Φ:

porosity

ɛ p ij :

plastic-strain-tensor components

x :

relative volume (compressibility)

ɛp :

equivalent plastic strain

α1,n 1,b, h :

material constants

T m ,T m0 :

melting temperature under loading and under normal conditions, respectively

ρ0 :

initial density

V 0 :

initial specific volume of an alloy

α n :

weight fraction of thenth component

V 0n :

specific volume of thenth component

γ 0 :

Grüneisen function

K s :

isothermal modulus in compression

β:

thermal-expansion coefficient

C v :

thermal capacity at constant volume

ρ1 :

density atT=0 K

m :

parameter of interatomic interaction

E 0 :

initial specific energy of thermal vibrations

f * :

limiting value off

ɛ p * :

limiting value of ɛp

W 0 :

impact velocity

ɛ0 :

specific internal energy atT=0 K

References

  1. R. A. Krektuleva, “Transformation of plane shock waves in gradient media,” inMechanics of a Deformable Solid Body [in Russian], Tomsk University Publishers, Tomsk (1992), pp. 35–40.

    Google Scholar 

  2. A. V. Gerasimov and R. A. Krektuleva, “Certain results of numerical experiments on the propagation of shock waves in materials with the gradient distribution of physicomechanical properties,” in:Detonation. Chemical Physics of Combustion and Explosion Processes (Proc. X Symp. on Combustion and Explosion) [in Russian], Chernogolovka (1992), pp. 137–138.

  3. R. A. Krektuleva and A. V. Gerasimov, “Propagation of a shock pulse in condensed gradient media,” in:Numerical Solution Methods for Problems of the Elasticity and Plasticity Theories (Proc. XIII Interrepublican Conf.) [in Russian], Novosibirsk (1995), pp. 104–108.

  4. M. L. Wilkins, “Calculation of elastoplastic flows,” in:Fundamental Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967), pp. 212–263.

    Google Scholar 

  5. K. P. Stanyukovich (ed.),Physics of Explosion [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  6. J. N. Johnson, “Dynamic fracture and spallation in ductile solid,”J. Appl. Phys.,52, No. 4, 2812–2825 (1981).

    Article  Google Scholar 

  7. D. J. Streinberg, S. G. Cochran, and M. W. Guinan, “A constitutive model for metals applicable at high-rate strain,”J. Appl. Phys.,51, No. 3, 1496–1504 (1980).

    Google Scholar 

  8. M. L. Wilkins, “Modelling the behaviour of materials,” in:Structural Impact and Crashworthiness (Proc. Int. Conf.),2, 243–277 (1984).

  9. R. A. Krektuleva and T. M. Platova, “Simulation of the behavior of multicomponent materials in shock waves,” in:Detonation (Proc. II All-Union Conf. on Detonation, Chernogolovka) [in Russian],2, 98–101 (1991).

  10. R. Kinslow (ed.),High-Velocity Impact Phenomena, Academic Press, New York-London (1970).

    Google Scholar 

  11. K. N. Kreyenhagen, M. H. Wagner, J. J. Piechocki, and R. L. Bjork, “Ballistic limit determination in impacts on multimaterial laminated targets,”AIAA J.,8, No. 12, 2147–2151 (1970).

    Article  Google Scholar 

  12. G. I. Kanel and S. V. Razorenov,Shock Wave Loading of Metals. Motion of Specimen, Surface [in Russian], Preprint, Institute of Chemical Physics, Academy of Sciences of the USSR (1989).

Download references

Authors

Additional information

Research Institute of Applied Mathematics and Mechanics, Tomsk University, Tomsk, Russia. Translated from Problemy Prochnosti, No. 2, pp. 139–150, March–April, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, A.V., Krektuleva, R.A. Deformation and fracture model for a multicomponent elastoplastic porous medium with continuous variation of physicomechanical characteristics. Strength Mater 31, 210–218 (1999). https://doi.org/10.1007/BF02511111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02511111

Keywords

Navigation