Skip to main content
Log in

Spatial distribution of phytochromes

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Phytochromes are chromoproteins which mediate several light responses in plants. Phytochrome proteins are encoded by a gene family which is currently being characterized in several plant species. Analysis of type-specific mutants of two well-characterized members of the family, PhyA and PhyB, indicates that these proteins have distinct functions. Much remains to be learned about the mechanisms by which the phytochromes carry out their distinct and diverse functions. It is hoped that information concerning the localization of phytochromes, at the whole plant and subcellular levels, will aid in elucidating the mechanism of phytochrome function. This review, which summarizes information about phytochrome distribution, has an emphasis on recent reports in which the molecular species of phytochrome are differentiated. However, classical data are also included and reinterpreted using knowledge of the phytochrome family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

GUS:

β-glucuronidase

PhyA:

phytochrome A

Phy B:

phytochrome B

Pr:

red light-absorbing form of phytochrome

Pfr:

far-red light-absorbing form of phytochrome

References

  • Abe, H., Takio, K., Titani, K. andFuruya, M. 1989. Amino-terminal amino acid sequences of pea phytochrome II fragments obtained by limited proteolysis. Plant Cell Physiol.30: 1089–1097.

    CAS  Google Scholar 

  • Adam, E., Kozma Bognar, L., Kolar, C., Schäfer, E. andNagy, F. 1996. The tissue-specific expession of a tobacco phytochrome B gene. Plant Physiol.110: 1081–1088.

    PubMed  CAS  Google Scholar 

  • Adam, E., Szell, M., Szekeres, M., Schäfer, E. andNagy, F. 1994. The developmental and tissue-specific expression of tobacco phytochrome-A genes. Plant J.6: 283–293.

    Article  CAS  Google Scholar 

  • Black, M. andShuttleworth, J.E. 1974. The role of the cotyledons in the photocontrol of hypocotyl extension inCucumis sativus L. Planta117: 57–66.

    Article  Google Scholar 

  • Borthwick, H.A., Hendricks, S.B., andParker, M.W. 1952a. The reaction controlling floral initiation. Proc. Natl. Acad. Sci. USA38: 929–934.

    Article  PubMed  CAS  Google Scholar 

  • Borthwick, H.A., Hendricks, S.B., Parker, M.W., Toole, E.H. andToole, V.K. 1952b. A reversible photoreaction controlling seed germination. Proc. Natl. Acad. Sci. USA38: 662–666.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, W.R. andSiegelman, H.W. 1965. Distribution of phytochrome in etiolated seedlings. Plant Physiol.40: 934–941.

    PubMed  CAS  Google Scholar 

  • Butler, W.L., Norris, K.H., Siegelman, H.W. andHendricks, S.B. 1959. Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. Natl. Acad. Sci. USA45: 1703–1708.

    Article  PubMed  CAS  Google Scholar 

  • Clack, T., Mathews, S. andSharrock, R.A. 1994. The phytochrome apoprotein family inArabidopsis is encoded by five genes: The sequences and expression ofPHYD andPHYE. Plant Mol. Biol.25: 413–427.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, R.A. andPratt, L.H. 1974. Electron microscopic localization of phytochrome in plants using an indirect antibody labeling method. J. Histochem. Cytochem.22: 1039–1047.

    PubMed  CAS  Google Scholar 

  • Datta, N., Chen, Y.-R. andRoux, S.J. 1985. Phytochrome and calcium stimulation of protein phosphorylation in isolated pea nuclei. Biochem. Biophys. Res. Commun.128: 1403–1408.

    PubMed  CAS  Google Scholar 

  • Dehesh, K., Tepperman, J., Christensen, A.H. andQuail, P.H. 1991.phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol. Gen. Genet.225: 305–313.

    Article  PubMed  CAS  Google Scholar 

  • Duke, S.O. andWickliff, J.L. 1969.Zea shoot development in response to red light interruption of the darkgrowth period. I. Inhibition of the first internode elongation. Plant Physiol.44: 1027–1030.

    PubMed  Google Scholar 

  • Evans A. andSmith, H. 1976. Spectrophotemetric evidence for the presence of phytochrome in the envelope membranes of barley etioplasts. Nature259: 323–325.

    Article  CAS  Google Scholar 

  • Fondeville, J.C., Borthwick, H.A. andHendricks, S.B. 1966. Leaflet movement ofMimosa pudica L. Indicative of phytochrome action. Planta69: 357–364.

    Article  Google Scholar 

  • Furuya, M. 1993. Phytochromes-Their molecular species, gene families, and functions. Annu. Rev. Plant Physiol. Plant Mol. Biol.44: 617–645.

    Article  CAS  Google Scholar 

  • Furuya, M. andSchäfer, E. 1996. Photoperception and signalling of induction reactions by different phytochromes. Trends Plant Sci.1: 301–307.

    Google Scholar 

  • Gaba, V. andBlack, M. 1983. The control of cell growth by light.In W. Shropshire, Jr. and H. Mohr ed., Encyclopedia of Plant Physiology New Ser., vol. 16A, Springer-Verlag, Berlin, pp. 358–400.

    Google Scholar 

  • Haupt, W., Mörtel, G. andWinkelnkemper, I. 1969. Demonstration of different dichroic orientation of phytochrome Pr and Pfr. Planta88: 183–186.

    Article  CAS  Google Scholar 

  • Hershey, H.O., Barker, R.F., Idler, K.B., Lissemore, J.L. andQuail, P.H. 1985. Analysis of cloned cDNA and genomic sequences for phytochrome: Complete amino acid sequences for two gene products expresed in etiolatedAvena. Nucleic Acids Res.13: 8543–8559.

    PubMed  CAS  Google Scholar 

  • Heyer, A. andGatz, C. 1992a. Isolation and characterization of a cDNA-clone coding for potato type-A phytochrome. Plant Mol. Biol.18: 535–544.

    Article  PubMed  CAS  Google Scholar 

  • Heyer, A. andGatz, C. 1992b. Isolation and characterization of a cDNA-clone coding for potato type-B phytochrome. Plant Mol. Biol.20: 589–600.

    Article  PubMed  CAS  Google Scholar 

  • Jabben, M. andHolmes, M.G. 1983. Phytochrome in light-grown plants.In W. Shropshire, Jr. and H. Mohr ed., Encyclopedia of Plant Physiology New Ser., vol. 16A, Springer-Verlag, Berlin. pp. 704–722.

    Google Scholar 

  • Johnson, E., Bradley, M., Harberd, N.P. andWhitelam, G.C. 1994. Photoresponses of light-grown phyA mutants ofArabidopsis-Phytochrome A is required for the perception of daylength extensions. Plant Physiol.105: 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E.M., Pao, L.I. andFeldman, L.J. 1991. Regulation of phytochrome message abundance in root caps of maize. Plant Physiol.95: 544–550.

    PubMed  CAS  Google Scholar 

  • Jordan, E.T., Hatfield, P.M., Hondred, D., Talon, M., Zeevaart, J.A.D. andVierstra, R.D. 1995. Phytochrome A overexpression in transgenic tobacco-Correlation of dwarf phenotype with high concentrations of phytochrome in vascular tissue and attenuated gibberellin levels. Plant Physiol.107: 797–805.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick, R.E. andKronenberg, G.H.M. ed. 1994. Photomorphogenesis in Plants. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Komeda, Y., Yamashita, H., Sato, N., Tsukaya, H. andNaito, S. 1991. Regulated expression of a genefusion product derived from the gene for phytochromel fromPisum sativum and theuidA gene fromE. Coli in transgenicPetunia-hybrida. Plant Cell Physiol.32: 737–743.

    CAS  Google Scholar 

  • Konomi, K., Abe, H. andM. Furuya 1987. Changes in the content of phytochrome I and II apoproteins in embryonic axes of pea seeds during imbibition. Plant Cell Physiol.28: 1443–1451.

    CAS  Google Scholar 

  • Kunkel, T., Tomizawa, K.-I., Kern, R., Furuya, M., Chua, N.-H. andSchäfer, E. 1993.In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B. Eur. J. Biochem.215: 587–594.

    Article  PubMed  CAS  Google Scholar 

  • López-Juez, E., Nagatani, A., Tomizawa, K.I., Deak, M., Kern, R., Kendrick, R.E. andFuruya, M. 1992. The cucumber long hypocotyl mutant lacks a light-stable PHYB-like phytochrome. Plant Cell4: 241–251.

    Article  PubMed  Google Scholar 

  • Mackenzie, J.M., Briggs, W.R. andPratt, L.H. 1978. Intracellular phytochrome distribution as a function of its molecular form and of its destruction. Am. J. Bot.65: 671–676.

    Article  CAS  Google Scholar 

  • Mackenzie, J.M., Coleman, J.M., Briggs, W.R. andPratt, L.H. 1975. Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form. Proc. Natl. Acad. Sci. USA72: 799–803.

    Article  PubMed  Google Scholar 

  • Manabe, K. andFuruya, M. 1975. Distribution and non-photochemical transformation of phytochrome in subcellular fractions fromPisum epicotyls. Plant Physiol.56: 772–775.

    Article  PubMed  CAS  Google Scholar 

  • Mancinelli, A.L. 1994. The physiology of phytochrome action.In R.E. Kendrick and G.H.M. Kronenberg ed., Photomorphogenesis in Plants, Kluwer Academic Publishers, Dordrecht. pp. 211–269.

    Google Scholar 

  • Mandoli, D.F. andBriggs, W.R. 1988. The photoperceptive sites and the function of tissue light-piping in photomorphogenesis of etiolated oat seedlings. Plant Cell Environ.5: 137–145.

    Google Scholar 

  • McCurdy, D.W. andPratt L.H. 1986. Immunogold electron microscopy of phytochrome in Avena: Identification of intracellular sites responsible for phytochrome sequestering and enhanced pelletability. J. Cell Biol.103: 2541–2550.

    Article  PubMed  CAS  Google Scholar 

  • Nagatani, A., Chory, J. andFuruya, M. 1991. Phytochrome B is not detectable in thehy3 mutant ofArabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant Cell Physiol.32: 1119–1122.

    CAS  Google Scholar 

  • Nagatani, A., Jenkins, G.I. andFuruya, M. 1988. Non-specific association of phytochrome to nuclei during isolation from dark-grown pea (Pisum sativum cv. Alaska) plumules. Plant Cell Physiol.29: 1141–1145.

    CAS  Google Scholar 

  • Nagatani, A., Lumsden, P.J., Konomi, K. andAbe, H. 1987. Application of monoclonal antibodies to phytochrome studies.In M. Furuya ed., Phytochrome and Photoregulation in Plants Academic Press, Tokyo. pp. 95–114.

    Google Scholar 

  • Nagatani, A., Reed, J.W. andChory, J. 1993. Isolation and initial characterization ofArabidopsis mutants that are deficient in phytochrome A. Plant Physiol.102: 269–277.

    PubMed  CAS  Google Scholar 

  • Neuhaus, G., Bowler, C., Kern, R. andChua, N.H. 1993. Calcium/calmodulin-dependent and calcium/calniodulin-independent phytochrome signal transduction pathways. Cell73: 937–952.

    Article  PubMed  CAS  Google Scholar 

  • Nick, P., Ehman, B., Furuya, M. andSchäfer, E. 1993. Cell communication, stochastic cell responses, and anthocyanin pattern in mustard cotyledons. Plant Cell5: 541–552.

    Article  PubMed  CAS  Google Scholar 

  • Parks, B.M. andQuail, P.H. 1993.hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell,5: 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Powell, R.D. andMorgan, P.W. 1980. Opening of the hypocotyl hook in seedlings as influenced by light and adjacent tissues. Planta148: 188–191.

    Article  Google Scholar 

  • Pratt, L.H. 1983. Assay of photomorphogenic photoreceptors.In W. Shropshire, Jr. and H. Mohr ed., Encyclopedia of Plant Physiology New Ser., vol. 16A, Springer-Verlag, Berlin. pp. 152–177.

    Google Scholar 

  • Pratt, L.H. 1994. Distribution and localization of phytochrome within the plant.In R.E. Kendrick and, G.H.M. Kronenberg ed., Photomorphogenesis in Plants, Kluwer Academic Publishers, Dordrecht. pp. 163–185.

    Google Scholar 

  • Pratt, L.H. andColeman, R.A. 1971. Immunocytochemical localization of phytochrome. Proc. Natl. Acad. Sci. USA68: 2431–2435.

    Article  PubMed  CAS  Google Scholar 

  • Quail, P.H. 1983. Rapid action of phytochrome in photomorphogenesis.In W. Shropshire, Jr. and H. Mohr ed., Encyclopedia of Plant Physiology New Ser., vol. 16A, Springer-Verlag, Berlin, pp. 178–212.

    Google Scholar 

  • Raikhel, N. 1992. Nuclear targeting in plants. Plant Physiol.100: 1627–1632.

    PubMed  CAS  Google Scholar 

  • Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M. andChory, J. 1994. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol.104: 1139–1149.

    PubMed  CAS  Google Scholar 

  • Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M. andChory, J. 1993. Mutations in the gene for the red far-red light receptor phytochrome B alter cell elongation and physiological responses throughoutArabidopsis development. Plant Cell,5: 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Romeo, L.C., Sommer, D., Gotor, C. andSong, P.-S. 1991. Protein phosphorylation in isolated nuclei from etiolatedAvena seedlings. Effects of red/far-red light and cholera toxin. FEBS Lett.282: 347–350.

    Article  Google Scholar 

  • Sage, L.C. 1992. Pigment of the Imagination-A History of Phytochrome Research. Academic Press, San Diego.

    Google Scholar 

  • Sakamoto, K. andNagatani, A. 1996. Nuclear localization activity of phytochrome B. Plant J.10: 859–868.

    Article  PubMed  CAS  Google Scholar 

  • Sharrock, R.A. andQuail, P.H. 1989. Novel phytochrome sequences inArabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev.3: 1745–1757.

    PubMed  CAS  Google Scholar 

  • Shinomura, T., Nagatani, A., Chory, J. andFuruya, M. 1994. The induction of seed germination inArabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol.104: 363–371.

    PubMed  CAS  Google Scholar 

  • Shinomura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanabe, M. andFuruya, M. 1996. Action spectra for phytochrome A- and B-specific photoinduction of seed germination inArabidopsis thaliana. Proc. Natl. Acad. Sci. USA93: 8129–8133.

    Article  PubMed  CAS  Google Scholar 

  • Shropshire, W., Jr. andMohr, H. (ed.) 1983. Photomorphogenesis, Encyclopedia of Plant Physiology, New Ser., vol. 16, Springer-Verlag, Berlin.

    Google Scholar 

  • Somers, D.E. andQuail, P.H. 1995. Temporal and spatial expression patterns ofPHYA andPHYB genes in Arabidopsis. Plant J.7: 413–427.

    Article  PubMed  CAS  Google Scholar 

  • Somers, D.E., Sharrock, R.A., Tepperman, J.M. andQuail, P.H. 1991. Thehy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome-B. Plant Cell3: 1263–1274.

    Article  PubMed  CAS  Google Scholar 

  • Speth, V., Otto, V. andSchäfer, E. 1986. Intracellular localization of phytochrome in oat coleoptiles by electron microscopy. Planta168: 299–304.

    Article  CAS  Google Scholar 

  • Terry, M.J. andKendrick, R.E. 1996. Theaurea andyellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis. J. Biol. Chem.271: 21681–21686.

    Article  PubMed  CAS  Google Scholar 

  • Vince-Prue, D. 1983. Photomorphogenesis and flowering.In W. Shropshire, Jr. and H. Mohr ed., Encyclopedia of Plant Physiology New Ser., vol. 16A, Springer-Verlag, Berlin. pp. 457–490.

    Google Scholar 

  • Wada, M., Grolig, F. andHaupt, W. 1993. Light-oriented chloroplast positioning-contribution to progress in photobiology. J. Photochem. Photobiol. B-Biol.17: 3–25.

    Article  CAS  Google Scholar 

  • Wada, M. andKadota, A. 1989. Photomorphogenesis in lower green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.40: 169–191.

    Article  Google Scholar 

  • Wada, M., Kadota, A. andFuruya, M. 1981. Intracellular photoreceptive site for polarotropism in protonema of the fernAdiantum capillus-veneris L. Plant Cell Physiol.22: 1481–1488.

    Google Scholar 

  • Wada, M., Kadota, A. andFuruya, M. 1983. Intracellular localization and dichroic orientation of phytochrome in plasma membrane and/or ectoplasm of a centrifuged protonema of fernAdiantum. Plant Cell Physiol.24: 1441–1447.

    CAS  Google Scholar 

  • Whitelam, G.C., Johnson, E., Peng, J.R., Carol, P., Anderson, M.L., Cowl, J.S. andHarberd, N.P. 1993. Phytochrome-A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell5: 757–768.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, F.A., J., M.D. andJaffe, M.J. 1975. Association of phytochrome with rough-surfaced endoplasmic reticulum fractions from soybean hypocotyls. Plant Physiol.56: 738–743.

    PubMed  CAS  Google Scholar 

  • Yanovsky, M.J., Casal, J.J. andWhitelam G.C. 1995. Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation inArabidopsis: Weak de-etiolation of thephyA mutant under dense canopies. Plant Cell Environ.18: 788–794.

    Article  CAS  Google Scholar 

  • Yu, R. 1975. Characterization of the phytochromecontaining particles obtained by glutaraldehyde pre-fixation of maize coleoptiles. J. Exp. Bot.26: 808–822.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagatani, A. Spatial distribution of phytochromes. J. Plant Res. 110, 123–130 (1997). https://doi.org/10.1007/BF02506851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506851

Key words

Navigation